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Abstract

A numerical and experimental investigation of the bending behavior of six eight-ply
graphite-epoxy circular cylinders is presented. Bending is induced by applying a known
end-rotation to each end of the cylinder, analogous to a beam in bending. The cylinders
have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thick-
ness ratio of approximately 160. A [¥45/0/90]g quasi-isotropic layup and two orthotropic
layups, [¥45/05]g and [¥45/90,], are studied. A geometrically nonlinear special-purpose
analysis, based on Donnell’s nonlinear shell equations, is developed to study the prebuck-
ling responses and gain insight into the effects of non-ideal boundary conditions and initial
geometric imperfections. A geometrically nonlinear finite element analysis is utilized to
compare with the prebuckling solutions of the special-purpose analysis and to study the
buckling and postbuckling responses of both geometrically perfect and imperfect cylin-
ders. The imperfect cylinder geometries are represented by an analytical approximation of
the measured shape imperfections. Extensive experimental data are obtained from quasi-
static tests of the cylinders using a test fixture specifically designed for the present investi-
gation. A description of the test fixture is included. The experimental data are compared to
predictions for both perfect and imperfect cylinder geometries. Prebuckling results are
presented in the form of displacement and strain profiles. Buckling end-rotations,
moments, and strains are reported, and predicted mode shapes are presented. Observed
and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are
illustrated for the postbuckling responses. It is found that a geometrically nonlinear bound-
ary layer behavior characterizes the prebuckling responses. The boundary layer behavior is
sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections,

applied end-rotation, and non-ideal boundary conditions. Buckling end-rotations, strains,
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and moments are influenced by laminate orthotropy and initial geometric imperfections.
Measured buckling results correlate well with predictions for the geometrically imperfect
specimens. The postbuckling analyses predict equilibrium paths with a number of scallop-
shaped branches that correspond to unique deflection patterns. The observed postbuckling
deflection patterns and measured strain profiles show striking similarities to the predic-
tions in some cases. Ultimate failure of the cylinders is attributed to an interlaminar shear

failure mode along the nodal lines of the postbuckling deflection patterns.
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Nomenclature

Laminate Properties and Geometry

laminate extensional stiffnesses, see Eq. (B.4)

2
A11A22_A12

extensional stiffness combination, i
11

laminate coupling stiffnesses, see Eq. (B.4)

laminate bending stiffnesses, see Eq. (B.4)

2
DnDzz"Dlz

bending stiffness combination, b
11

D11D26—D12D16

bending stiffness combination, D
11

2
D11D66"Dls

bending stiffness combination, D
1

inplane Young’s moduli

2
A11A22_A12

effective axial inplane Young’s modulus,
HA,,

2
A11A22_A12

effective circumferential inplane Young’s modulus, A
11

inplane shear modulus

A

effective inplane shear modulus, —135’

lamina thickness

cylinder wall thickness
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Nomenclature

. . . . 3
cylinder cross-section moment of inertia, nR™H
cylinder length

reduced ply stiffnesses, transformed reduced ply stiffnesses

cylinder midsurface radius

axial, circumferential, and radial coordinates, respectively, of refer-

ence surface
global cartesian coordinate directions

lamina orientation angle

lamina Poisson’s ratios

. . . , . A12
effective laminate Poisson’s ratio, .
22

Displacements, Strains, Stresses, and Resultants

Nx’ NO’ NxB

M., Mg, M4
P P AP
Ny N, Nog

P P P
Mx’ M9’ Mxﬂ

o o
|3x ’ BO
ex’ 86’ YxO

o (¢}

o
ex ’ 69 ’ Yxe

force resultants, see Eqs. (B.2) and (B.3)

moment resultants, see Egs. (B.2) and (B.3)
force resultants due to initial pre-straining, see Eq. (B.6)

moment resultants due to initial pre-straining, see Eq. (B.6)

aMx aMxO o o
shear resultant, i + 2R_86 - [NX By + Ng- Be ]

axial, circumferential, and radial displacements, respectively, of

cylinder midsurface

midsurface rotations, see Eq. (2.2)

total inplane strains, see Eq. (2.3)

inplane midsurface strains, see Eq. (2.4)
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cx’ 09’ txO

Analysis

F(xy(x)

Tl

WR

y (x)

Y (x)

Nomenclature

midsurface curvatures, see Eq. (2.5)

inplane stresses, see Eq. (B.1)

(16N + 8) x 1 array of right-hand sides of first order nonlinear

ordinary differential equations, see Eq. (2.29)

(16N + 8) x 1 array of boundary conditions, see Eq. (2.30)

rotational spring stiffness of elastic support, see Eq. (2.17)
radial spring stiffness of elastic support, see Eq. (2.17)

applied bending moment

number of circumferential harmonics considered in expansion of

the primary response variables
known radial shape imperfection, see Eqgs. (2.35) and (B.7)
applied radial deformation boundary condition, see Eq. (2.16)

T
1 () 7,00 s igw g (0] + (16N +8) x 1 array of axial

components of primary response variables, see definition of Y (x)
below

¥ (%) Yo (X} ol Yoy (X)

Yanse2®) o Yave2 (B | g aN 4 1) marrix,

Yian+8 (X) Yians9(X) o Yien 48 (X)

see Eq. (2.27)

amplitude of axisymmetric shape imperfection normalized by H,
see Eq. (2.35)
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Y (x, 0)

®(x,6,T(x0))

¥ (8)

Q

Nomenclature

T
[u°, ve, we, B: s NN, O, M,J , 8 x 1 array of primary

response variables, see Eq. (2.27)

8 x 1 array of right-hand sides of first order nonlinear partial differ-
ential equations, see Eq. (2.18) and Egs. (2.19) through (2.26)

T
[l, cosB, cos29, ..., cosN®, ..., sinB, sin6, ..., sinNe:l )

(2N + 1) x 1 array of circumferential components of primary

response variables, see Eq. (2.27)

applied end-rotation, see Eq. (2.16)

Response Parameters

m

Buckling Parameters

M

cr

cr

MEP

cr
Jfe

Mcr

N

cr

Nisotropic
cr

number of axial half-waves corresponding to classical axisymmet-
ric buckling of axially compressed cylinder, see Eq. (1.2)

measure of cross-section ovalization, see Eq. (2.33)

characteristic half-wavelength of boundary layer responses, see Eq.
(2.34)

classical buckling moment for short cylinders, see Eqgs. (1.4) and

(2.40)

classical Brazier cross-section collapse moment for long cylinders,

see Egs. (1.5) and (2.39)

experimental buckling moment

buckling moment predicted by finite element analysis

classical axial compression buckling force resultant, see Eq. (1.1)

classical axial compression buckling force resultant for isotropic

cylinders, see Eq. (1.3)
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cr

cr

exp
cr

efe

cr

o

cr

QP

cr

4
cr

Failure Strains

c t
€1 &

Nomenclature

classical axial compression buckling end-shortening, see Eq. (2.43)

classical buckling midsurface compressive strain, see Eq. (2.42)
experimental buckling midsurface compressive strain

buckling midsurface compressive strain predicted by finite element

analysis

nondimensional length, ,\/LZH/ R3, see Fig. 1-3

classical buckling end-rotation, see Eq. (2.41)
experimental buckling end-rotation

buckling end-rotation predicted by finite element analysis

maximum longitudinal compressive strain, tensile strain
maximum transverse compressive strain, tensile strain

maximum shear strain
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1. Introduction

The thin-walled circular cylinder is an important configuration found in a host of struc-
tural applications. Due to its structurally efficient shape, cylinders are commonly utilized
to resist various combinations of axial, torsional, bending, and pressure loads. Structural
and shell wall stiffness parameters can be tailored to meet the loading requirements fre-
quently encountered in aerospace, transportation, and other commercial and military appli-
cations. Advanced composite materials offer high strength, low weight, good corrosion
resistance, and the excellent fatigue properties often desired in these applications. It would
seem to be natural to combine the efficiency of a cylindrical structure with the superior
characteristics of composite materials. However, typical structural composites, such as
thermosets, are brittle by nature. Material failure can occur suddenly and without prior
indication. Since the load carrying capacity of a shell structure is determined by either a
stable loading condition in which local deformations can induce material failure, or by an
unstable loading condition which can trigger large deformations and subsequent material
failure, it is apparent that sudden material failure could be a detriment. To take advantage
of the properties of advanced composite materials and to achieve maximum structural per-
formance and efficiency despite this sudden material failure characteristic, it will be neces-
sary to predict and verify the behavior and failure characteristics of composite shell

structures more accurately than previously necessary with metallic shell structures.

It is with this goal in mind that the problem of bending of thin-walled composite cylin-
ders was investigated in depth. In the present investigation bending refers to the loading
state where one side of the cylinder is in compression in the axial direction and the other
side is in tension. This type of bending load is analogous to a beam in bending and is
intended to simulate a primary loading condition prevalent in a number of structural con-
figurations typically found in transport aircraft fuselage sections, launch vehicles, and

transportation and storage containers.
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To follow in this chapter is a survey of some of the literature felt to be relevant to this
topic, followed by an overview of the approach used in this study. The survey will begin
with a brief description of the axial compression problem and then will review the litera-
ture pertinent to the stable and unstable bending of isotropic and anisotropic thin-walled

cylinders.

1.1 Literature Survey

Stability issues often arise in problems involving compression-loaded shell structures.
For example, it is well known that axially compressed cylinders buckle in an unstable
fashion. Since a cylinder in bending experiences compression as well as tension, it is not
surprising to find that buckling is also a key feature of this problem. Therefore, it seems
that a brief discussion on the axial compression of circular cylinders is appropriate. Insight
into the bending problem and useful analogies can result from discussing the axial com-

pression problem.

1.1.1 Axial Compression

Axial compression is often a primary loading state in many thin-walled, circular cylinder
applications. As a result, the axial compression problem has been the focus of many inves-
tigations in the literature. Numerous studies of the compression response have been con-
ducted for both isotropic and anisotropic material wall constructions. Most often, these
studies are concerned with the determination of the bifurcation buckling load. Excluding
the case of column buckling, this is the load at which a cylinder in axial compression will
suddenly buckle into either an axisymmetric or doubly pen'odic* mode shape. These two
types of mode shapes are shown in Fig. 1-1. The critical axial force resultant associated
with the axisymmetric buckling of an imperfection-free anisotropic cylinder, shown in Fig.
1-1 (a), can be computed from a relation given in [1]7. This relation can be reduced to the

simple equation

2
N, = % [EgHD, (1.1)

=

* Ofien referred to as the ‘diamond-shaped’ or ‘checkerboard” deflection pattern.
 Numbers in square brackets designate references.

2
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for the practical case of balanced symmetric laminates. The corresponding number of axial

half-waves of the buckling mode, m, is given by the equation

1

EgH 4
T
mr_ o 5 (1.2)
DR
It can be shown that Eq. (1.1) reduces to the well known isotropic buckling relation
NSOrePic - 0.605EH*/R (1.3)

cr
assuming a Poisson’s ratio of 0.3.

The buckling phenomenon is a complex process that typically results in large out-of-
plane, or radial, deformations which are accompanied by significant reductions in the shell
stiffness and the load carrying capacity. Material damage, either inplane or interlaminar,
may occur during this buckling deformation process if damage has not already occurred
during the prebuckling process. It is possible, however, for a cylinder to buckle elastically
without material damage if the buckling strains remain sufficiently small.

Buckling test data for cylinders in axial compression are widely reported in the literature
for isotropic cylinders, and to a lesser extent, for anisotropic cylinders. Generally, it has
been found that large discrepancies exist between experimental buckling data and analyti-
cal predictions. Since the 1940’s, it has become known that cylindrical shells are
extremely imperfection sensitive so that many of the observed discrepancies could be

», Iy,
H 222
2SS
ogtoa,
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(a) Axisymmetric Mode (b) Doubly Periodic Mode

Fig. 1-1 Axial Compression Buckling Patterns
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attributed to imperfections such as shape variations, thickness variations, and nonuniform
loading conditions. Other important factors that have been found to contribute to these dif-
ferences are the consideration of geometrically nonlinear prebuckling conditions and the
effect of boundary conditions. The full explanation of these discrepancies is still an active
topic of investigation. See references [2] and [3] for a comprehensive review of the subject
until the mid 1980’s.

Based on some of the observations made from the axial compression problem, one might
expect that imperfections, boundary conditions, and geometric nonlinearities play an
important role in the bending problem as well. A survey of the bending problem is pre-

sented next.

1.1.2 Bending

The treatment in the literature of cylinders subjected to bending is not nearly as exten-
sive as that of cylinders in compression. As in the case of axial compression, it appears
that most of the literature is concerned with the determination of the point of instability for
cylindrical shells in bending. This is indeed a very important problem since buckling insta-
bility determines the range of stable bending for many practical shell structures. However,
it is also very important to understand the prebuckling behavior as well as the parameters
that influence it. An understanding of the prebuckling problem will allow greater insight
into the buckling behavior.

Prebuckling

The stable bending problem has been considered at various levels of complexity. The
simplest analyses consider the cylinder in bending as a beam with a circular cross-section
in flexure. This approach is characterized by a geometrically linear axial membrane stress
state in which end effects and cross-sectional deformations are neglected. Solutions to this
problem can be obtained through mechanics of materials approaches, three-dimensional
elasticity approaches, or two-dimensional shell theory approaches. These solutions are
well known for isotropic materials but are not as readily available for anisotropic materi-

als. See for example references [4-9].

More refined solutions can be obtained for the bending of finite length anisotropic cylin-
ders using a two-dimensional shell theory approach. Fuchs and Hyer [10] used a Kantor-
ovich procedure and obtained closed form solutions for the geometrically linear
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displacement, inplane stress, and interlaminar stress responses for symmetric laminates. It
was found that end supports significantly affect the displacement, force resultant, intralam-
inar and interlaminar stress responses in a boundary layer region near the supported ends.
It was also shown that the shell wall stiffnesses and cylinder geometry affect the character
of this boundary layer region. The geometrically nonlinear prebuckling response of finite
length anisotropic cylinders was also solved by Fuchs and Hyer [11] using a similar
approach to the one used in [10]. It was found that the geometrically nonlinear behavior of
balanced symmetric laminates significantly affects the prebuckling boundary layer. Unlike
in the geometrically linear problem, it was found that the character of the geometrically
nonlinear boundary layer responses is a function of the load level in addition to the shell

wall stiffness and geometric parameters.

Buckling

Studies of the buckling of cylinders in bending have been conducted in a manner analo-
gous to the studies conducted of buckling due to axial compression. However, in bending,
unlike in axial compression loading, there are two classical structural collapse modes that
may result in large deformations. In the case of relatively short cylinders, sudden bifurca-
tion buckling can occur on the compression side of the cylinder, much like the case of
axial compression, triggering short wavelength buckling deformations. For very long cyl-
inders, there is the additional possibility of cross-section instability, where the cross-sec-
tion flattens, or ovalizes. This ovalization effect reduces the cross-sectional moment of
inertia until the cylinder can no longer sustain the applied bending moment, resulting in a
large ‘kink’ in the center of the cylinder. For this case, collapse is defined by the maximum
moment or limit point. With intermediate-length cylinders, both classical modes interact to
cause the formation of local buckles on the compression side. These collapse modes are

depicted schematically in Fig. 1-2.

The bifurcation buckling problem depicted in Fig. 1-2 (a) was first considered by Fliigge
in 1932 [12]. Fliigge used a Rayleigh-Ritz approach to solving the bending buckling equa-
tions for isotropic cylinders assuming a membrane prebuckling solution. Unfortunately,
Fliigge was unable to conduct an extensive numerical study due to the inadequate compu-
tational capabilities of the day. It was not until 1961 that more complete results were
obtained for isotropic cylinders by Seide and Weingarten [13]. They computed the critical
bending buckling stresses using the Galerkin procedure assuming a membrane prebuck-
ling state. They found that the critical buckling stress was essentially equal to the buckling

5



Introduction

stress corresponding to the case of uniform axial compression. Both edge effects and oval-
ization effects are neglected in their solution. The critical moment can therefore be com-
puted from Eq. (1.3) as

M_, = nR*N“°"P = 0.605RERH". (1.4)

cr cr

Dramatic improvements in computer technology since the 1960’s has generated consid-
erable attention to this buckling problem. A number of investigators considered the buck-
ling of isotropic cylinders in [14-16], anisotropic cylinders [11,17-24], and sandwich
cylinders [25-28]. Membrane prebuckling conditions are assumed in nearly all instances
with the exception of [11] and [24].

The problem of cross-section instability of isotropic cylinders, illustrated in Fig. 1-2 (b),
was first addressed by Brazier in 1926 [29]. Brazier found that infinitely long cylinders
collapsed when the radially inward deflection reached a value of 2/9 of the cylinder radius,
regardless of the shell wall thickness and stiffness properties. The corresponding bending

moment was found to be
B 2
M, = 0.329nERH (1.5)

for the case of a Poisson’s ratio equal to 0.3, a value somewhat greater than half the value
found by Seide and Weingarten. Many investigators have since studied the ovalization of
isotropic cylinders [30-38], in many cases refining Brazier’s original solution. Anisotropic
cylinders are considered in the analyses of [11,39-40].

short wavelength
buckles

) local buckles
ovalizaton

(a) Compression Buckling  (b) Cross-section Collapse  (c) Interaction for Cylinder
Mode of Short Cylinder Mode of Long Cylinder of Intermediate Length

Fig. 1-2 Cylinder Bending Collapse Modes
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The bending collapse of finite length cylinders was first investigated by Axelrad” in
1965 [41]. Axelrad considered the effect of localized buckling on the cross-section oval-
ization of isotropic cylinders. It was shown that buckling occurred for short cylinders
according to Eq. (1.4), while buckling with ovalization occurred at a bending moment
approximately 10% to 15% lower than predicted by Eq. (1.5) for very long cylinders. The
buckling moment of intermediate length cylinders was found as a function the nondimen-
sional length, A, which is proportional to the quantity A/LzH/ R.A simplified treatment
of Axelrad’s ideas is presented by Calladine [42]. Other investigations can be found in
[43-50].

The bending collapse response characteristics discussed in the preceding are summa-
rized schematically in Fig. 1-3, where the moment values are normalized with respect to
Eq. (1.4). It is seen in Fig. 1-3 (a) that short cylinders, i.e., small values of A, collapse in a
compression buckling mode. As A increases from small to large values, there is a region
of interaction between the compression buckling and cross-section collapse modes. Very
long cylinders, i.e., large values of A, buckle predominantly due to cross-section ovaliza-
tion. The corresponding moment-rotation characteristics for these various situations are
shown in Fig. 1-3 (b). It is observed from this figure that the moment-rotation relation is
essentially linear until buckling for small values of A. Cylinders with large values of A, in
contrast, are characterized by the limit point behavior. Intermediate length cylinders

exhibit a combination of both the linear behavior and the limit point behavior.

Postbuckling

The postbuckling analysis of cylindrical shells is an extremely complex and computa-
tionally intense task, even with state-of-the-art analysis tools. This fact is reflected by the
extremely limited number of postbuckling investigations in the literature, particularly in
the area of bending [51]. It is well known, however, that the initial postbuckling path of
cylindrical shells is extremely unstable and that a high degree of imperfection sensitivity
can be expected. Suffice it to say, there is much to be considered in the area of postbuck-

ling of cylinders in bending.

* also written as Akselrad or Aksel’rad.
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Experimental Investigations

Nearly all experimental investigations regarding cylinders center on the buckling of rel-
atively short unstiffened [52-61] and stiffened [62-74] isotropic cylinders. Experimental
data for anisotropic wall constructions are extremely limited and are primarily confined to
relatively long and thick-walled constructions [75-81]. One notable exception, however, is
the investigation by Holston et al. [77], which provides detailed information on the buck-
ling of filament wound fiberglass-epoxy cylinders subjected to bending, compression, tor-
sion, and combined loading. One source was located for a thin-walled, stiffened,

corrugated cylinder subjected to bending [82].

In the experimental investigations, measures of the global bending responses, such as
bending moments and strains, are typically reported. Strain data are usually limited to the
circumferential variation of the axial strains far removed from the cylinder ends.

1.2 Objective of Current Study

It is evident from the literature cited in the section 1.1.2 that very few investigations con-
sider both an in-depth analytical study and an experimental investigation of the bending of

Compression Buckling
MIM,, Interaction Region MIM,,

A [ Cross-secllion Collapse A
1.0

r Compression Buckling

(small values of A)

Interaction Mode

— prebuckling
0.5 * ™. | @ buckling
. TR D postbuckling

Cross-section Collapse
(large values of A)

Rotation

(a) Collapse Moment vs. (b) Moment vs. Rotation
Dimensionless Length, A (after Axelrad [41])
(after Calladine [42])

Fig. 1-3 Cylinder Bending Collapse Response Characteristics
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composite cylinders. Previous analytical investigations generally lacked detailed prebuck-
ling analyses, and experimental data were found to be scarce and limited in scope. The
objective of the present work is to provide a detailed investigation of this problem, consid-
ering the geometrically nonlinear prebuckling responses, the buckling responses, and the
postbuckling responses. Additionally, essential experimental data are provided for com-
posite cylinders. Although practical cylindrical shell structures are often stiffened and can
be subjected to combined loading conditions in service, it is important to gain fundamental
insight into the basic problem of unstiffened composite cylinders. Understanding of the
influence of laminate stiffness and structural parameters on the prebuckling, buckling, and
postbuckling response characteristics can then be used to gain insight into the bending

behavior of more complex shell structures.

1.3 Approach

The approach used in the present study involves both a numerical and an experimental
investigation of six composite cylinders with three layups and two lengths. The cylinders
were tested in a bending test fixture constructed specifically for the present investigation
and were analyzed in consideration of geometric nonlinearities and initial geometric shape

imperfections.

Chapter 2 describes the analyses used to study the prebuckling, buckling, and postbuck-
ling responses. The theory for a computationally efficient special-purpose program is
developed for the purpose of gaining insight into the prebuckling responses. This program
is employed to study the effects of non-ideal boundary conditions and axisymmetric geo-
metric imperfections in addition to determining the onset of buckling. A finite element
program is utilized to compare prebuckling results with the special-purpose program and
to study the buckling and postbuckling responses. Selected responses, computed with the
various computational approaches, are presented to illustrate the general character and fea-
tures of the bending behavior of six idealized cylinders. Supporting information for the

prebuckling analysis is provided in Appendices A, B, and C.

The experimental program is discussed in Chapter 3. The bending test apparatus, speci-
mens, instrumentation, and experimental procedures are described in detail. Specifics of

the specimen fabrication and preparation procedures are provided in Appendix D. Infor-
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mation regarding the specimen properties and surface shape measurements are presented

in Appendix E and Appendix F, respectively.

The measured and observed bending responses are reported and compared to the numer-
ical predictions for the individual test specimens in Chapter 4. Numerical predictions for
both perfect and imperfect cylinder geometries are presented. The moment vs. end-rota-
tion characteristics, prebuckling displacements and strain distributions, buckling end-rota-
tions and corresponding moments, and postbuckling deflection shapes and strain profiles
are presented and discussed. Observed material damage is also addressed.

As might be expected, the observed and predicted responses do not always exhibit per-
fect correlation. Non-ideal boundary conditions and slight irregularities in the fixture and
specimens can in some cases have a measurable effect on the responses. A number of
potential sources of discrepancies are described and it is illustrated that they can influence
the predicted responses. These issues are addressed in Chapter 5.

Finally, in Chapter 6, conclusions are drawn based on the various aspects of the prebuck-
ling, buckling, and postbuckling responses and the observed material failure. Also, recom-
mendations are made for the further research of some important issues not addressed in the

current study.

10



2. Analysis

The analysis of the cylinder bending responses is divided into three major response cate-
gories. The first section considers the prebuckling responses and is based on a semi-analyt-
ical approach. The governing equations, boundary conditions, and solution methodology
for this approach are developed. Non-ideal boundary conditions, initial shape imperfec-
tions, and the possibility of prebuckling material failure are also considered. Solutions for
the prebuckling problem are computed with a special-purpose program. The second sec-
tion is concerned with the prediction of the buckling responses. Buckling end-rotations
and moments are computed from a classical analysis, a special use of the prebuckling anal-
ysis, and a finite element analysis. The final section considers the postbuckling responses
which are studied using a finite element analysis. The analyses of the buckling and post-
buckling responses are based on the STAGS [83]" finite element program. Selected pre-
buckling, buckling, and postbuckling responses are illustrated through numerical

examples.

2.1 Prebuckling

The governing equations for the thin-walled cylinder of Fig. 2-1 are based on Donnell’s
nonlinear kinematics [54]. These kinematics are used throughout the prebuckling analysis
for the reason that geometrically nonlinearities are included and that the resulting equa-
tions are amenable to solution by the methods to be discussed in this section. It is the most
fundamental shell theory available and as such is occasionally the subject of controversy

(see Appendix A).

* The QSTAGS implementation of the STAGS program was used throughout this work. Documentation
was under development at the time of this writing. The STAGSC-1 implementation is documented in this
reference.

11
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Fig. 2-1 Cylinder Geometry

2.1.1 Equations and Solution Procedure
Kinematics

It is assumed that the strains are small compared to unity and that the cylinder wall is
thin compared to the cylinder radius so that z/R-terms can neglected in comparison to
unity. Further, it is assumed that the Kirchhoff-Love hypothesis is applicable so that the
displacements at any point in the shell wall can be approximated by the relations

u(x,9,z) =u®(x,0) +z~[32 (x,9)
v(x0,2) =v°(x,8) +2- By (x,6) @.1)
wi(x,0,z) =w®(x,0).

The midsurface rotations are defined as

o

o 8w° 0 aW
B, =5 @ B =x3

(2.2)

[« ]

The axial, circumferential, and radial displacements of the midsurface of the shell wall are
defined as u°, v°, and w°, respectively. These midsurface quantities are shown in Fig. 2-
2.

The intralaminar strains at any point in the shell wall are given as

€ (x,6,2) =€ (1,0)+z- %, (x,60)
g (x,8,2) =€ (x,0) +z-K, (x,0) (2.3)

Vo (%,6,2) =75 (x,0) +2-K g (x,6) .

12
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The geometrically nonlinear midsurface strains are related to the displacement quantities

by the relations

° ou® 1 o

-t 1 2
EX - ax +2(BX )
ov® w° 1

o _ .2

% “roo "' T2 Pe) @49
o ou’ av

Yo =roe*ax BB

and the changes in curvature are

x ox ox?
. 9By owe
KQ = o = - a lid (25)
RJ6 R206?
o aB; aBz _ 82w°

X =2 .
“ = 5y "Ro0 T “Roxo

Equilibrium Equations
The governing equations for the right circular cylinder shown in Fig. 2-1 are derived
from the principle of virtual work,

dV = dU+dW = 0. (2.6)

The first variation of the internal energy, U, is represented by the volume integral
+_
dU = j _[ J (cx&:x +0y88y+ 7T 40Y,) dzR (1 +2/R) dOdx.  (2.7)
=-570=0"2="3

The dW term in Eq. (2.6) represents the first variation of the so-called potential energy of
external traction forces. Examples of external traction forces are lateral pressure, axial ten-
sion or compression, and torsion. The effects of flexible end supports can also be included
in this manner. In this study, only flexible end supports are assumed to contribute to the

potential energy of external forces.

13
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Fig. 2-2 Kinematics of a Cylindrical Shell Element

The flexible end supports are modeled as radial and rotational springs, as shown in Fig.
2-3 (a). The contribution to the virtual work is

2n
awzj [Fé-6w°(+11,9)+Fé-5w°(—[—',9)
8=0 2 2 (2.8)
+Fl, 8p° (+’§,e) + Fyp- 8 (-’5,9) ]Rde,

where Fé and F Q are the radial spring forces, and F ;, and F,, are the rotational spring
moments associated with each end of the cylinder. The linear-elastic spring constants for

the radial and rotation springs are K, and Ky, respectively.

Due to the thinness assumption, z/R is neglected in comparison to unity in the volume
integral in Eq. (2.7). Further, it is assumed that loading is quasi-static so that inertial body
forces may be neglected. The nonlinear equilibrium equations and corresponding bound-
ary conditions are derived by substituting Eq. (2.3) through Eq. (2.5), along with Eq. (2.2),

14
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into Eq. (2.7). The resulting equation is integrated through the thickness and the defini-
tions of the force and moment resultants, as defined in Appendix B, are applied. Integra-
tion by parts results in the three equilibrium equations

aNx aNxO _
ox " Roe =0 @9
aNxe aNG _
3 TRag =V 210
30, My 0 o o, _Ng
+ _ [N g + N, - ]-— = 0. (2.11)
ox Ra02 rop e Px tNoBo -7

The accompanying variationally consistent boundary conditions at the ends of the cylin-
der, x = +L/2, are

N, = specified or u° = specified (2.12)

N,o = specified or v° = specified (2.13)

Q, = specified or w® = specified (2.14)
. e © . e

M_ = specified or B, = specified. (2.15)

The bending test fixture, to be discussed in Chapter 3, was designed to enforce support
conditions best described as ‘clamped’. In practice, however, it is difficult to achieve ide-
ally clamped supports. Since flexibility of the end supports may affect the bending
responses, the supports are modeled as the radial and rotational springs mentioned previ-
ously. These flexible spring supports may also be used to simulate ring stiffeners.

Bending of the cylinder is accomplished by the application of the appropriate boundary
conditions, Egs. (2.12) through (2.15). An equal rotation, Q, is applied to each end of the
cylinder by specifying the kinematic quantities 4° and Bz , as illustrated in Figs. 2-3 (b)
and (c). The associated bending moment is given by the quantity M. Non-ideal boundary
conditions are modeled by including the flexibility of the end supports, K o and K, and
an applied radial deformation of the cylinder ends, wp, as shown in Fig. 2-3 (c). The quan-
tity wp, as will be explained later, is due to thermal stresses that arise durin g the prepara-

tion of the test specimens. The resulting kinematic boundary conditions are given by
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L

u® (_5,6) =FRQcosO
y° i%,@) =
L
L Q,(_-2—,6) (2.16)
L ME2,0)
° +_ + =
Bx (—2’6) - KM ¥QC056.

In the above, the displacements and rotations in the radial and rotational springs, and
hence, the displacements and rotations at the cylinder ends, are related to the forces and

moments in the springs by the expressions

Fro 0.(+5,8)
we (+L/2,0) = K—Q =t wp,
0 0
0. (-3,6)
wo(=L/2,0) = 22 =+ ——  +w,,
Ko Ko

3 .17
F;’ Mx(+'§s e)

B: (+L/2,0) = o— =— ———— —Qco0sH,
K, K,
L
o FA-’I MX(_E’G)
B, (-L/2,0) = — =—- ——F—— +Qcosb.
Ky Ky

Solution of Equations

It proves convenient to choose the eight variables that naturally arise in the derivation of
the variationally consistent boundary conditions, Eqs. (2.12) through (2.15), as the pri-
mary response variables. The equilibrium equations, Eqs. (2.9) through (2.11), can be
reduced to a set of eight coupled first-order nonlinear partial differential equations of the

form

aY (x, 0)

a?(x,e)) )18
T 218

= -d;(x,e,?(x,e),Tae— .
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180°

x=-=L/2 x=+L/2

(a) Elastic Support Model (b) Applied Rotation (c) Boundary Conditions

Fig. 2-3 Loading and Boundary Conditions

The arrays Y and represent the eight primary problem variables and the right-hand
sides of the governing partial differential equations, respectively. The steps involved in
obtaining this form are described in the section “Two-Dimensional Partial Differential

Equations” in Appendix C. The eight governing partial differential equations are

ou® Ny 1.0y Ap| v w® 1 ow° 2 Ny

x A, 2t A, Rt 7 3 %9 A (2.19)
P

ov° Nxe_ ou° L 6° ow® N N.g .

* " A, R®‘Pr R\, (2.20)

awo o

x - P (2.21)

3B, M, Dy, o*w° _DgdB, M,

ox _D11+D11R2862_2D—“m+ Dy (2.22)

ON, 9N

0x  RJ6 (2.23)

N, ApoN, (e w® 02w° 8N§ A, aNf -~

% A, Re6 (R2892+Rzae(1+Raez ))* R36 A, Ro8|
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00, 1 *we \ (A [av° w° 1 ow° 2)
sze(l Ro% )( IN *A \ree "R T2 (Roe )
D, "M, . 3w . OB,

"D, R0z 1 REop - 20; s

aNxe o N aBz A12 aNx ow°
*Rap Px tNw RO6 A, RI® RIO

" 9ve .aw°+1 awe 2 1+82w°
- (R—za;,i R399 E‘m)( R0

1 Fwe\ (A, p
& (1~ ()

D, "ML Mg aw (AlzaNf 8N£j
" D, R2002 " R2062 R0© \A,; R0® RO

(2.25)

oM DygdM,  .3we . IB, aw°

% =% 2p e * 2Pz rraes - 4D g + Me B

29M DM,
*%| Ro6 ~ D, ka0 |’

(2.26)

The superscript ‘P’ in the above equations indicates known pre-straining quantities that
are discussed in Appendix B. These pre-straining quantities may include initial geometric
imperfections, thermal effects, mechanical pre-loading, etc. The essential features of the
governing equations are that they are first-order equations in the axial coordinate, x, and
only the primary variables themselves, the 0-derivatives of these primary variables, and
known pre-straining quantities appear on the right-hand sides. These features make it pos-
sible to transform the two-dimensional problem into a one-dimensional problem by substi-
tuting a separable solution of the form

T(x,8) = Y()-$(0) 2.27)

into the eight partial differential equations and using the Kantorovich technique. The
matrix Y (x) and the array ‘T‘(B) represent the unknown axial components and the

known circumferential components, respectively, of the primary problem variables. The
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dimension of both Y (x) and g (0) depend on the number of circumferential harmonics,
N, retained in the analysis. The resulting one-dimensional problem requires the solution of
16N + 8 nonlinear first-order coupled ordinary differential equations for the unknown ele-
ments of the Y (x) matrix. It will be demonstrated in section 2.1.5 that retaining three 0-
harmonics is sufficient to accurately predict the prebuckling responses. When N = 3,
each response variable consists of 2N + 1, or seven, components. For example, the axial
displacement of the midsurface is represented by the relation
u®(x,8) =y, (x) +y,(x) - cos8+y;(x) - cos20+y, (x) - cos30
+ ys(x) - sin®+yc (x) - sin20+ y, (x) - sin38. (2.28)
In principle, there is no limit to the range of end-rotation, Q, for which the present solu-
tion technique can be applied. It is possible to compute the postbuckling response using
this method. However, many more harmonic terms and a more complex solution algorithm
would be required to compute the postbuckling responses. It is more efficient to compute
the postbuckling responses using existing programs in order to take full advantage of state-

of-the-art solution techniques.

The present investigation assumes N = 3, requiring the solution of 56 first-order equa-
tions. The 56 first-order equations were derived with the aid of the symbolic manipulator
MACSYMA [84]. The procedure followed to derive the equations is outlined in the sec-
tion “One-Dimensional Ordinary Differential Equations” in Appendix C. The result of this

procedure is a nonlinear two point boundary value problem of the form

ay(x) o L L
dx - F(x’y(x))a _isxs-‘-i’ (229)
with boundary conditions of the form
- Y L
g(y(£3)) =0. (2.30)

The vector y represents the 56 unknown axial components of Y (x) and the vector F is
shorthand notation for the right-hand sides of the first-order equations. The vector g repre-
sents the 56 boundary conditions that are associated with the elements of y. For example,
the first boundary condition of Eq. (2.16) is expressed in terms of Eq. (2.28) as
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L

u’ (,,5, 0) =FRQ - cos6

=y, (i%) +y2(i%) - €050+ y, (i%) . cos26+y4(i%) -cos36 (2.31)
+ ¥s (i%) - Sin® + y, (i%) - 5in20 + y, (i%) - 5in30.

Equating coefficients of the constant and harmonic terms in Eq. (2.31) leads to 14 bound-

ary conditions for u°. These are

Y, (£5) =3RQ,
L (2.32)
yﬁi§)=() i=1,3<i<7.

o
The remaining 42 boundary conditions for v°, w®, and B are obtained in a similar fash-

ion.

Equations (2.29) and (2.30) are amenable to numerical solution by commercially avail-
able computer library routines such as the IMSL subroutine DBVPFD [85]. This subrou-
tine is based on a variable order, variable step, finite difference algorithm using Newton’s
method. The theory is documented in references [86-87]. A FORTRAN computer program
was developed using this subroutine to compute the prebuckling bending responses. The
responses due to axial tension or compression, torsion, lateral pressure, or any combina-
tion of these can also be studied with this program by applying the appropriate displace-
ment boundary conditions and pressure values. In addition to the non-ideal boundary
conditions mentioned previously, various initial geometric imperfections can be studied by

specifying the appropriate pre-straining quantities.

The prebuckling problem was also solved with the STAGS finite element program as a
check on the analysis just described. This approach will be compared to the present analy-
sis in the context of the buckling analysis to be described in section 2.2.3.

Numerical examples of the characteristic bending responses are presented next. The
effects of non-ideal boundary conditions, axisymmetric shape imperfections, a higher-

order harmonic representation, and prebuckling material failure are also discussed.
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2.1.2 Prebuckling Responses of Idealized Cylinders

The prebuckling responses are presented for six idealized laminated graphite-epoxy cyl-
inders for the purpose of understanding the experimentally observed responses to be dis-
cussed in Chapter 4. In the present chapter, the term “idealized” refers to the uniformity of
geometric parameters and material properties among the six cylinders. In Chapter 4, slight
variations in the geometric parameters and material properties will be taken into account.
The cylinders have a quasi-isotropic [+45/0/90]s layup, an axially-stiff [+45/0;]g layup,
and a hoop-stiff [¥45/90,]g layup. The idealized cylinder geometries are described by
R/H =160, L/R =2 and 5§, and R = 6 inches. The mechanical properties summarized in
Table 2-1 are assumed to be representative of the idealized cylinders. The mechanical
properties of the actual test specimens will be discussed in connection with Chapter 3.

Table 2-1 Mechanical Properties for Idealized Graphite-Epoxy Cylinders

E,, Msi E,, Msi Gy, Msi Vi,

234 1.75 1.03 0.285

Bending responses were computed using the nonlinear prebuckling analysis described in
section 2.1.1. Displacement and axial strain responses are compared at two values of end-
rotation. The end-rotations and axial strains are normalized by the corresponding classical
buckling end-rotations and compressive axial buckling strains, __and €_, respectively,
as a matter of convenience. These classical buckling parameters and the corresponding
classical buckling moment, M, will be discussed in further detail in section 2.2.1. The

values of the buckling parameters are summarized in Table 2-2.

Table 2-2 Classical Buckling Parameters for Idealized Cylinders

Con:?x]'a:}::tion M, in.-lbs Q- % , degrees € HE
[745/0/90] 141,445 0.102 3.615
[¥45/0;]g 95,966 0.048 1,661
[745/90,]5 148,114 0.244 8,525
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Displacement Response

Displacement responses are compared at the circumferential locations 8 = 0°, 90°, and
180° in Fig. 2-4 for L/R =2 and in Fig. 2-5 for L/R = 5. The value of end-rotation in these
figures is Q/Q_, = 0.5 and 1.0. Radial displacements at 6 = 0" and 180" are denoted by
w, and wg,, Tespectively, and tangential displacements at 6 = 90° are denoted by vg.
All displacements are normalized with respect to the cylinder wall thickness, H, and are
plotted as a function of the normalized axial location, x/L. Please note, positive values of
w, correspond to radially outward deflections at the top of the cylinder and positive values
of w,g, correspond to radially inward deflections at the bottom of the cylinder. Positive
values of vy, correspond to downward deflections in the direction of bending at the side of
the cylinder, as indicated in the inset in Fig. 2-4 (¢). In this way, the ‘shape’ of the w,,
wigo» and v, profiles correspond physically to the familiar parabolic deflection shape of a

beam in bending.

The wy, vgy, and w g, displacement responses of the three laminates are similar to one
another. The displacements exhibit the overall parabolic deflection shape encountered in
classical beam bending. However, unlike in classical beam bending theory, cross-section
deformations are predicted to occur. The cross-section deformations for these relatively
short cylinders are primarily due to the development of a boundary layer region near the

cylinder ends. Cross-section ovalization, defined as

_ |wol — | W1
2 y
=0

d (2.33)

aal I

is negligibly small compared to R for all six cylinders. For example, for the cylinders with
L/R =5, the values of & do not exceed 0.2% of the radius for Q/ ch = 1.0. These values
of & are significantly smaller than the inward radial deflections of 2/9, or 22%, of the cyl-

inder radius required to initiate cross-section collapse in the Brazier problem.

The boundary layer region is most pronounced on the compression side of the cylinders,
0 =07, but is also evident to a lesser extent on the tension side, 8 = 180°. The deflection at
the side of the cylinders, 8 =90°, is identical to the parabolic deflection shape predicted by
beam bending theory and exhibits no boundary layer.

Comparing parts (a) and (b) of Figs. 2-4 and 2-5 demonstrates that the peak amplitudes,

attenuation length, and overall shape characteristics of the w, displacements in the bound-
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ary layer region have a nonlinear relation to the applied end-rotation. As the end-rotation
is increased from Q/ ch =0.5t0 1.0, the w, displacements take on an oscillatory charac-
ter that becomes attenuated away from the ends. Fig. 2-4 (b) indicates that the attenuation
length for Q/Q = 1.0 is of the order of the half-length of the cylinders with L/R =2, or
approximately six inches. For the cylinders with L/R =5, shown in Fig. 2-5 (b), the atten-
uation length is also approximately six inches, or 40% of the half-length of these cylinders.
It is concluded from these figures that the peak amplitudes, attenuation length, and half-
wavelength of the oscillations associated with the boundary layer region are layup depen-
dent. The characteristic half-wavelength of the oscillations, termed A, appears to be largest
for the [¥45/0,]5 cylinders, followed by the [¥45/0/90]g and [¥45/90,]¢ cylinders.

Comparing the w4, deflections in parts (e) and (f) of Figs. 2-4 and 2-5 indicates that the
boundary layer region attenuation length and the shape characteristics on the tension side
of the cylinder are relatively insensitive to the value of applied end-rotation. Only the

magnitude of the deflections appear to be affected by the applied end-rotations.

A comparison between Figs. 2-4 and 2-5 demonstrates the relative effect of the cylinder
length on the deflection shapes. It is observed that the boundary layer deformations on the
compression and tension sides of the L/R = 2 cylinders, Figs. 2-4 (a)-(b) and (e)-(f), have
a significant influence on the overall parabolic bending shape. In comparison to the cylin-
ders with L/R = 2, the influence of the boundary layer is substantially diminished for L/R
=5, as seen in Figs. 2-5 (a)-(b) and (e)-(f). The parabolic shape of vy, Figs. 2-4 and 2-5
(c)-(d), is seen to be unaffected by length.

It is interesting to note that the radial deflections at 6 = 0° are directed radially outward
for the [¥45/0;]g cylinder with L/R = 2 whereas they are directed radially inward for the
[+45/0/90]g and [¥45/90,]g cylinders (see Figs. 2-4 (a)-(b)). This difference in radial
deflections can be attributed, in part, to a Poisson effect. The radial expansion due to Pois-
son’s ratio can overcome the radial inward deflections due to bending, resulting in a net
outward deflection. This is the case with the [+45/0;]s cylinder which has a relatively large
effective laminate Poisson’s ratio of (.65, compared to (.30 and 0.19 for the [¥45/0/90]5
and [+45/90,]s cylinders, respectively. The opposite effect is evident at 8 = 180° (see Figs.
2-4 (e)-(f)). For the cylinders with L/R = 5, the corresponding radial deflections are all
directed either radially inward at 6 = 0° or radially outward at 8 = 180° due to the rela-

tively large bending deflections.
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Three-dimensional views of the deformed quasi-isotropic [¥45/0/90]g cylinders, illus-
trated in Fig. 2-6 for L/R = 2 and 5, show the circumferential variation of the boundary
layer deformations. The deflections in this figure are exaggerated for emphasis. It is
observed that the boundary layer region at 8 = 0° has an attenuation length that extends to

90° in the circumferential direction.
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Fig. 2-6 Prebuckling Deformations, L/R =2 and §

Strain Response

Axial strains are illustrated for the cylinders with L/R =2 and 5 in Figs. 2-7 and 2-8,
respectively. The strains are plotted as a function of the axial position at the wall thickness
locations z/H = +0.5, 0.0, and —0.5 and at the circumferential locations 6 = 0" and 180°.
The end-rotations in these figures are /Q_ = 0.5 and 1.0 and the classical buckling
strain, €_, is the normalization factor.

The axial strain response characteristics shown in these figures are similar for all three
laminates. Figures (a), (c), and (e) clearly indicate a progressive development of the
boundary layer on the compression side of the cylinders as the end-rotation is increased
from ©/Q_ =0.5to 1.0. The boundary layer region on the tension side, shown in figures
(b), (d), and (f), remains relatively insensitive to the value of end-rotation.

Although the displacement responses for the cylinders with L/R =2 and 5 are substan-
tially different from one another, the overall character of the corresponding axial strain
responses are quite similar to one another. A comparison of the axial strain responses as a
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function of the absolute axial position demonstrates that the boundary layer strain
responses are identical for both cylinder lengths. Furthermore, it is evident from Figs. 2-7
(a) and (e) that the axial surface strains are sensitive indicators of the boundary layer

responses and are therefore well suited for comparative studies.

It is observed in the axial strain comparisons in (a), (c), and (e) of Figs. 2-7 and 2-8 that
the characteristic half-wavelength of the boundary layer responses is laminate dependent.

The characteristics of the boundary layer are discussed next.

Boundary Layer Characteristics

A comparison of the boundary layer attenuation length of the geometrically linear bend-
ing responses, discussed in [10], and the axisymmetric buckling response, discussed in the
section 1.1.1, indicates that the characteristic half-wavelength can be computed from Eq.
(1.2) as the ratio A = L/m. Re-writing Eq. (1.2), which is valid for the case of balanced

symmetric laminates, results in the relation

1
DRzZ
k=£=n[ 1 } (2.34)
m

The characteristic half-wavelength parameters computed from Eq. (2.34) are presented
in Table 2-3 for the three laminates under consideration. The second column in Table 2-3
represents the characteristic length compared to /. The remaining two columns indicate
the number of half-waves, m, associated with the two values of L/R. The table indicates
that, compared to the quasi-isotropic [¥45/0/90]g cylinder, the attenuation length of the
boundary effects is predicted to be approximately 23% longer for the [¥45/0,]g cylinder
and 16% shorter for the [45/90,1g cylinder.

Table 2-3 Characteristic Half-Wavelength Parameters for Idealized Cylinders

Congrilition % m,L/R =2 m,L/R =5
[+45/0/90] 214 15.0 37.5
[¥45/0,]g 26.4 (+23%%) 12.1 30.3
[¥45/90,] 18.0 (-16%%) 17.8 44.5

a. Percent difference relative 10 {+45/0/90]g cylinder.
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The characteristic half-wave length of the axial surface strain response, A, is illustrated
in Fig. 2-9 for the [¥45/0,]g cylinder with L/R = 2. The end-rotation in this figure is
Q/Q_, =10.The intersections between the induced axial surface strains and the nominal
applied midsurface strain in this figure define the characteristic half-wave length of the

boundary layer.

This section discussed the character of the bending responses of ideal cylinders. It is well
known that deviations from the ideal can influence the responses. The effect of several

non-ideal conditions on the cylinder bending responses is discussed next.

0.0 -
Z
16 =0 r A
0.5 F
nominal applied
€ midsurface strain
0 _.—AV/\\/
Q/Q_ =10, O
[¥45/0,]s, 15
L/R =2, R/H =160, I surface strain
z/H =+0.5
2.0 " i " 1 . ! . 1 L J
00 01 02 03 04 05

x/L

Fig. 2-9 Characteristic Boundary Layer Response

2.1.3 Effect of Non-Ideal Boundary Conditions

As mentioned at the outset of this study, the boundaries of the cylinder are assumed to be
rigidly clamped. However, to aid in the interpretation of the experimental results, it is
instructive to study the effects of elastic boundary conditions. As discussed previously,
elasticity of the supports is modeled by the radial and rotational springs depicted in Fig. 2-
3 (a). Here, radial displacement and axial strain responses are compared for clamped sup-
ports, simple supports, and elastic supports for the [+45/0,]g cylinder with L/R = 2 and
R/H = 160. The effect of localized initial radial deformations on the cylinder ends, shown
as wp, in Fig. 2-3 (c), is also examined.
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Elastic Supports

The elastic support boundary conditions were presented in Egs. (2.16). A parameter study
was conducted to determine the range of rotational and radial spring stiffness values that
correspond to different support conditions. Based on the insight gained from the parameter
study, three values of the rotational spring stiffness, K,, were chosen to simulate a ‘simple
support’, an ‘elastic support’, and a ‘clamped’ support. Also, the radial spring stiffness,
KQ, was varied to simulate a rigid radial support and an elastic radial support. These six

support conditions are summarized in Table 2-4.

The radial displacements, w,, and w g, , are presented in Fig. 2-10 and the correspond-
ing axial strains are presented in Fig. 2-11. Responses with rigid radial supports are shown
in figures (a) and (b) and responses with elastic radial supports are shown in figures (c) and
(d). The end-rotation in these figures is Q/ch =1.0.

Table 2-4 Elastic Support Example Cases

_ 6 _ 3
Ky = 1.><10 , Ky = I.><10 ,

Support Condition Support Model
psi psi
‘simple support’,
K, = 1x107, Ibs
‘elastic support’, ”g{d Clas'tlc
K, = 1x10°, Ibs radial ‘ radial N
" ’ support® support

‘clamped suaport’,
Ky, = 1x10°, Ibs

a. Radial expansion inhibited so that ends remain circular.
b. Radial deformations allowed.

It is observed in Fig. 2-10 that wy is sensitive to the rotational support stiffness while
wgo 18 relatively insensitive by comparison. Figure (a) indicates that the peak deflections
are larger for both the simple supports and the elastic supports in comparison to the
clamped supports. The effect of elastic radial support conditions on w, is shown in figure
(c). The peak amplitudes are again larger for the simple support condition and the elastic
support condition in comparison to the clamped support condition. However, unlike the
case of the rigid radial support shown in figure (a), the maximum value of wy, for the sim-
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ple support condition occurs at the cylinder ends. On the tension side, it is observed that
the elastic radial support allows the ends of the cylinder to deform radially inward.

The corresponding axial surface strains, shown in Fig. 2-11, are similar in character to
the radial displacements. It is observed in figure (a) that the peak strains at the end of the
cylinder, x/L = 0.5, are lowered as the rotational spring stiffness, K, is relaxed. How-
ever, peak values are increased away from the ends as a result. Figure (c) demonstrates that
relaxing the radial spring stiffness, K 0 results in significant changes in the peak strain val-

04 ‘simple’ support—— 04r
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Fig. 2-10 Effect of Elastic Support Conditions, Radial Displacements
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ues compared to figure (a). In fact, the entire character of the strain profile changes as the
rotational spring stiffness is relaxed. The peak strain values are alleviated on the tension
side of the cylinder, shown in figures (b) and (d), as a result of relaxing either K y or K 0

Radial End-Deformations

The study of the radial end-deformation type of boundary condition, depicted in Fig. 2-3
(), is motivated by the fact that radial deformations were observed to occur during the
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Fig. 2-11 Effect of Elastic Support Conditions, Axial Strains at zZH = +0.5
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specimen preparation process. Details of the specimen preparation will be described in

connection with Chapter 3.

For simplicity, it is assumed that constant radial displacements, wp, are applied at the
cylinder ends, x/L = 0.5, to simulate either an initial uniform radial ‘pinching’ or
‘expansion’. The effect of wp on the radial displacement and axial strain responses is illus-
trated in Fig. 2-12 for the [¥45/0] cylinder with L/R = 2. The values of radial end-defor-
mations considered in this figure are wp/H = =02, 0.1, 0.0, +0.1, and +0.2. The end-
rotation is Q/€_, = 1.0 and the cylinder ends are clamped.

Fig. 2-12 indicates that radial deformations of only 10% and 20% of the wall thickness
significantly affect the responses on both the compression and tension sides of the cylin-
der. It is seen in figures (a) and (c), that negative values of wy (pinching) tend to increase
the peak boundary layer amplitudes on the compression side. Positive values of wp
(expansion) tend to decrease the severity of the peak boundary layer amplitudes. The
opposite effect is observed on the tension side of the cylinder, shown in figures (b) and (d).

2.1.4 Effect of Axisymmetric Imperfections

It is well known that geometric shape imperfections can significantly reduce the buck-
ling resistance of cylinders subjected to axial compression. An axisymmetric radial imper-

fection of the form

W(x) = —EH cosﬁz—x (2.35)

was introduced in the nonlinear prebuckling analysis in the form of a pre-strain to study its
effect on the bending responses. The implementation of this type of pre-strain is outlined
in the section “Initial Geometric Imperfections” in Appendix B. The axial half-wave num-
ber of the imperfection is given by the integer m and the amplitude is given as a fraction of
the wall thickness, &. This imperfection corresponds the axisymmetric buckling mode of a
axially-loaded cylinder when m is computed from Eg. (2.34). |

The radial displacement and axial strain responses were computed for the [+45/0,]s cyl-
inder with L/R = 2. Although Table 2-3 indicates a value of m = 12 for this cylinder, an
odd value of m = 11 was chosen for the imperfection to be symmetric about x/L = 0.
The responses are compared in Fig. 2-13 for the imperfection amplitudes of £ = 0.01 and
0.02. The value of end-rotation is /Q_ = 1.0 in this figure.
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Itis seen in Fig. 2-13 (a) and (c) that relatively mild imperfection amplitudes of only 1%
and 2% of the wall thickness appreciably affect the displacement and strain responses on
the compression side of the cylinder. The displacement and strain responses on the tension
side of the cylinder, shown in figures (b) and (d), respectively, are relatively unaffected.

2.1.5 Effect of Higher-Order Harmonic Representation

It was stated in section 2.1.1 that representing the response variables by three harmonics,
or N = 3, is sufficient to accurately predict the prebuckling responses. An analysis includ-
ing five harmonics, or N = 5, was developed to compare with the N = 3 analysis. The anal-
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Fig. 2-12 Effect of Radial End-Deformations
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ysis with five harmonics assumes an eleven-term series for the response variables. The
axial midsurface displacement of Eq. (2.28), for example, is represented by the relation

u® (x,0) =y, (x) +y,(x) - cos®+y;(x) - cos20+y, (x) - cos38
+ys5(x) - cos40 +y¢ (x) - cos58

2.36
+ y;(x) - 5in® +yg (x) - 5in20 + yg (x) - sin30 ( )
+ Y0 (x) - 5ind0+ 7y, (x) sin56.
_ 11mx
w(x,0) = -EHcos ——
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Fig. 2-13 Effect of Axisymmetric Radial Imperfection
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The N = 5 harmonic analysis requires the solution of 88 first-order equations and
requires substantially longer computer run times than the N = 3 analysis. As an example,
results from the analysis with five harmonics are compared to results from the analysis
with three harmonics in Fig. 2-14 for the [¥45/0,]g cylinder with L/R =2 and R/H = 160.
The end-rotation values in this figure are / Q_ =0.5and 1.0 and the radial displacement
and axial strain responses are shown on the compression and tension sides of the cylinder,
6 = 0" and 6 = 180°, respectively. For this example, the analysis with five harmonics
required approximately 340% more computer run time than the corresponding analysis

with three harmonics. A computional mesh of 91 grid points was used.

Fig. 2-14 demonstrates that both analyses predict the same bending responses for Q/ Q_
= 0.5. Some deviations in the peak amplitudes of the displacement and strain responses are
evident on the compression side of the cylinder at Q/Q_ = 1.0. These deviations occur
only when the end-rotation is in the vicinity of the buckling end-rotation. Therefore, it is
concluded that the prebuckling responses can be predicted by the N = 3 analysis with suf-
ficient accuracy for all prebuckling end-rotations up to the end-rotation at buckling.

2.1.6 First-Ply Failure

Predicting the initiation of first-ply material failure in composite laminates is a complex
problem and an entire subject in itself. There are a number of failure theories available to
predict the initiation of both intralaminar and interlaminar failure. Since there does not
appear to be a universally applicable failure criterion, the maximum strain criterion is
applied here to gain some insight in the first-ply failure of the three laminates under con-

sideration.

It is evident from the discussion in sections 2.1.2 through 2.1.4 that large prebuckling
deformations near the ends of the cylinder lead to significant strain levels. The maximum
strain failure criterion was implemented in the nonlinear prebuckling analysis to determine
the propensity for first-ply failure. The inplane strain components were computed on a
point-wise basis through the wall thickness at every grid point of the computational mesh
used in solving Egs. (2.29) and (2.30). First-ply failure is defined by the end-rotation and
associated bending moment which causes a component of strain in the fiber oriented coor-
dinate system to exceed its corresponding failure strain. The propensity for a compressive,
tensile, or shear failure mode at a given location in the cylinder wall is determined by the
magnitude of the three ratios F,, F,, and F,. These ratios are defined as
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The tensile, compressive, and shear failure strains in Eq. (2.37) are denoted by the super-
scripts ‘t’, ‘c’, and ‘s’, respectively, and the maximum strain values at a point are denoted
by the superscript ‘max’. The five failure modes corresponding to Eq. (2.37) are (1) fiber
compression failure in the 1-direction, (2) fiber tension failure in the 1-direction, (3) com-
pressive transverse failure in the 2-direction, (4) tensile transverse failure in the 2-direc-
tion, and (5) shear failure in the 1-2 plane. First-ply failure is assumed to occur when either
F,, F,, or F; exceed unity. Since the character of the strain responses varies with the
applied end-rotation, €2, the failure ratios must be computed at increasing values of Q to

determine the magnitude of €2 that induces the first-ply failure.

The failure ratios were computed for the three cylinders with L/R = 2 discussed in sec-
tion 2.1.2 and are illustrated in Fig. 2-15. The ratios are compared at the classical buckling
end-rotation /€2 = 1.0. The failure ratios are not shown for the cylinders with L/R =5
since the strains in the boundary layer region were found to be identical to the strains in the
boundary layer region of the cylinders with L/R = 2. The values of F,, F,, and F; are
represented by the horizontal bars in the figure and were computed at the indicated loca-
tions. The corresponding fiber orientation angle, a., is also indicated in the figure. The fail- .

ure strains were assumed to be

€] = 6,700 pe, g) = 6,530 e,
g5 = 10,000 ue, €, = 5,000 pe, (2.38)

Y, = 13,300 pe.

The failure ratios in Fig. 2-15 indicate that the [¥45/0/90]g and [¥45/0,]g cylinders are
likely to buckle before material failure occurs, while the [¥45/90,]g cylinder is likely to
exhibit matrix failure due to transverse tensile strains before buckling occurs. For the [45/
0/90]g and [¥45/0,]g cylinders, the maximum value of F, occurs in a 0° ply at the axial
positions x/L = 0.43 and +0.42, respectively. These positions correspond to the location
of the peak value of w;, in the boundary layer region near the cylinder ends shown in Fig.
2-4 (b). For the [¥45/90,]g cylinder, the maximum value of F| occurs on the tensile side in
a —45° ply at the axial positions x/L = £0.50. For all cylinders, the propensity for trans-
verse failure, indicated by the value of F,, is greatest on the tensile side at axial positions
x/L = £0.50. As indicated in Fig. 2-15, the value of F, is greatest in either a 90° or a
—45° degree ply since these have the least transverse strength. The maximum value of F,
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occurs on the compressive side in a —45° ply for all three cylinders, at the axial location

where the value of w, is maximum in the boundary layer region (see Fig. 2-4 (b)).

0.250 O°
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-0.500 -45°

0.250 ©0°
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-0.500 -45°

[+45/0,]g

0.50 180" +0.500 -45°
B 192 050 180° +0.250 90°
044 0° -0.500 -45°

[¥45/90,]s

Fig. 2-15 First-Ply Failure Ratio Comparison

If it is assumed that only fiber failure controls material failure in the cylinders during the
prebuckling phase of response, then the range of validity of the prebuckling solution, and
hence all the results just discussed, is determined by the stability of the solution. It is
assumed that matrix failure, as exhibited by the [¥45/90,]g cylinder, does not significantly
affect the structural integrity, and therefore the buckling resistance, of the cylinders. Sta-
bility is the topic of the next section.

2.2 Buckling

The prebuckling solution discussed in section 2.1 is stable until buckling occurs. The
onset of buckling is usually indicated by a rapid increase in the peak amplitudes of the pre-
buckling responses. Here, the buckling phenomenon is studied at increasing levels of
sophistication. The most elementary buckling estimates are given by classical theory. Fur-
ther detail is obtained by studying certain aspects of the prebuckling solution discussed in
section 2.1. A more sophisticated solution is obtained by a finite element analysis. These

various approaches are discussed in the following sections.
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2.2.1 Classical Estimates

It was seen from the literature survey, section 1.1.2, that classical collapse moments can
be computed for two different length extremes when boundary effects are neglected. It was
seen that the Brazier effect, shown in Fig. 1-2 (b), determines the collapse moment for
very long cylinders according to Eq. (1.5). Specialization of Brazier’s analysis to the case
of balanced symmetric laminates leads to the more general expression for the critical
moment {11, 39]

B _ 8

21R |—E HD,,. (2.39)

Me, = 27

It was also seen that short cylinders tend to buckle in the short-wavelength mode
depicted in Fig. 1-2 (a). If it is assumed that the observations made by Seide and Weingar-
ten [13] are applicable to anisotropic cylinders, then the critical bending moment can be
estimated for the case of balanced symmetric laminates from the theoretical axial com-

pression buckling load, Eq. (1.1), as

M,, = tR*N_, = 2nR [EqHD . (2.40)

It was shown in the discussion on the prebuckling displacements in section 2.1.2 that
cross-section ovalization, i.e. the Brazier effect, is negligible for the cylinders studied in
this investigation. As a result, Eq. (2.39) will significantly underestimate the buckling
moment for the relatively short cylinders studied here. Hence, the appropriate classical
buckling estimate, referred to in the present work as the classical buckling moment, is
given by Eq. (2.40).

With an estimate for the classical buckling moment, given by Eq. (2.40), the beam bend-
ing relationship may be used to compute the corresponding classical end-rotation angle as

Q = _MC’L - L @ﬁ (2.41)
e = 2EJ ~ R2AEH ‘

The nominal maximum compressive strain of the cylinder midsurface at buckling can be

computed from the end-rotation and the kinematic relation

(2.42)
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Egs. (2.40) through (2.42) represent a reasonable first approximation to the buckling val-
ues. A more detailed analysis is generally required for determining the end-rotation and
corresponding moment at buckling for cases in which boundary effects, geometric shape

imperfections, or more complex buckling modes are important.

To that end, it will be demonstrated that the nonlinear prebuckling analysis discussed in
section 2.1 can be used as a means to predict the onset of buckling. These predictions are
comparable to the classical buckling result of Egs. (2.40) through (2.42). However, the
influence of boundary effects, geometric shape imperfections, and the like can be included
with this use of nonlinear prebuckling analysis. It is not possible to study these influences

with the classical estimate.

2.2.2 Estimate from Prebuckling Solution

It is instructive to compare the behavior of the nonlinear prebuckling solution for a cyl-
inder subjected to axial compression to the solution of a cylinder subjected to bending.
The force resultant corresponding to the axisymmetric buckling of an axially-compressed
cylinder is given by Eq. (1.1). The end-shortening at buckling can be computed from the

column compression formula,

w, = . (2.43)

Axial surface strains induced by axial compression are compared to the strains induced
by bending for a [¥45/05]g cylinder in Fig. 2-16 (a). The geometry of this cylinder is
described by L/R =2 and R/H = 160. The axial surface strain distributions are compared
at three values of axial strain corresponding to 50%, 100%, and 110% of u_,. The equiva-
lent bending end-rotation applied at each cylinder end is computed from Eq. (2.41). The
responses in Fig. 2-16 (a) represent the axial surface strains at 6 = 0° for the cylinder in
bending and the strains at any 6-location for the cylinder in compression. The responses
for both the bending and the compression problems were computed using the nonlinear

prebuckling analysis discussed in section 2.1.

It is seen in Fig. 2-16 (a) that the axial strains are essentially the same for both loading
cases at 50% of u_,. At 100% of u
boundary layer due to axial compression is more pronounced than the peak amplitude in

however, it is observed that the peak amplitude in the

cr’

the boundary layer due to bending. The difference between the two responses is further
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pronounced at 110% of u_,. The peak amplitude of the axial compression response has
grown such that the peak value near the center of the cylinder, x/L = 0, exceeds the peak
value near the ends, x/L = 0.5. The difference between the two boundary layer responses
suggests that a cylinder in bending will buckle at a higher axial strain level than a cylinder

in compression.
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Fig. 2-16 Buckling Prediction by Means of Nonlinear Prebuckling Analysis
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The load vs. axial deformation responses corresponding to the axial compression and the
bending moment vs. end-rotation responses illustrated in Fig. 2-16 (a) are shown in Fig. 2-
16 (b). It is observed in this figure that both the axial and bending stiffnesses of the cylin-
der are significantly reduced in the vicinity of Q/Q_ = w/u_,, = 1.0. The reduction in
stiffness reflects the rapid growth of the radial displacements in the boundary layer
regions, shown in Fig. 2-16 (a), and is an indicator of the onset of buckling. Therefore,
buckling can be predicted by the change in prebuckling stiffness from the load vs. end-
shortening response curve. It is seen from Fig. 2-16 (b) that axisymmetric buckling is pre-
dicted to occur for the axially-compressed cylinder when the axial force resultant reaches
the classical buckling force resultant, N,. The bending moment at buckling is predicted to
occur at a moment value which is slightly higher than nRzNC,. The difference between the
buckling values for axial compression and bending is expected to depend on the cylinder

stiffness and geometry parameters.

It is concluded that the nonlinear prebuckling analysis can be used as an effective tool to
estimate the buckling moment and end-rotation values for cylinders that buckle in a short
wavelength mode. As mentioned earlier, the way in which the boundary conditions and
geometric imperfections, discussed in sections 2.1.3 and 2.1.4, affect the buckling end-

rotation and moment may be evaluated using this approach.

A more sophisticated buckling analysis is necessary if asymmetrical buckling modes are
prevalent, or if general geometric shape imperfections require consideration. A finite ele-
ment approach to the buckling problem is the subject of the following section.

2.2.3 Finite Element Analysis

The STAGS finite element program was selected to predict the buckling end-rotations
and moments due to its extensive nonlinear solution and bifurcation buckling capabilities,

and its ability to include general geometric shape imperfections.

Model and Boundary Conditions

The cylinders were modeled with a mesh consisting of four-noded STAGS 410 quadri-
lateral shell elements. The axial mesh density was uniform for all models except for the
[¥45/90,]g cylinders, for which the axial mesh density was increased slightly near the ends
to capture the boundary layer responses. The theory behind the 410 element is documented
in [88]. Specifics of the finite element model and the element topology are illustrated in
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Fig. 2-17. The 410 element is a flat facet-type element that is based on the Kirchhoff-Love
shell hypothesis and the nonlinear Lagrangian strain tensor. The element nodes include a
so-called ‘drilling’ rotational degree of freedom, B: , in addition to the rotations, B: and
B; » and the three translational degrees of freedom (see Fig. 2-17 (b)). Large rotations are
accounted for by the use of a corotational algorithm.

L/R =2 model: L/R = 5 model:
41 axial nodes 103 axial nodes
97 circumferential nodes 97 circumferential nodes
3977 nodes 9991 nodes
3840 elements 9792 elements
displacements
WO
uO
[o]
B,
rotations Bg node 1
]
* node3 node 4
(a) Finite Element Model (b) 410 Element Topology

Fig. 2-17 Finite Element Model and Element Topology

The bending end-rotation, €2, is applied to the model in the form of displacements in a
manner analogous to Eq. (2.16). A minor difference lies in the fact that six conditions must
be specified at each grid point on the boundary compared to the four conditions of Eq.
(2.16). The boundary conditions for the finite element analysis, which do not include the
elasticity of the supports or an applied radial deformation, are

u°(i%,6) = FRQcos9, BZ (i%,e) = FQcos0,
oL o, L

v (ii,e) =0, [39 (ii,e) = 0, (2.44)
o L o L o

w (ii, 9) = 0, BZ (i-z-, 9) = ;QS”’IG.
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It was demonstrated in section 2.1.4 that geometric shape imperfections can affect the
prebuckling responses. Imperfections with arbitrary axial variation can be modeled using
the approach discussed in section 2.1, but it is not possible to model shape imperfections
with arbitrary circumferential variation due to the finite number of harmonics, i.e. N = 3 or
5, accounted for in the expansion of the response variables. Many more harmonic terms
would be required to accurately represent general shape imperfections. It is possible, how-
ever, to model general shape imperfections in the finite element analysis. Fourier series
representations were used to accurately model the measured test specimen shape imperfec-
tions. The imperfections were introduced into the analysis in the form of an initial strain
imperfection. Details of the measured test specimen shape imperfections will be discussed
in the context of the test specimens in Chapter 3.

Analysis Procedure

The STAGS program has the capability to compute the buckling end-rotations and
moments in consideration of either a geometrically linear or a geometrically nonlinear
state of prebuckling. Nonlinear prebuckling will be considered here for the buckling calcu-
lations for the test specimens. The prebuckling solutions were obtained assuming both per-
fect and imperfect geometries using the nonlinear solution option which is based on
Newton’s method. The end-rotations were increased incrementally until a bifurcation
point was reached. The bifurcation point was indicated by the appearance of one or more
negative roots in the tangent stiffness matrix. A linear bifurcation buckling analysis was
then conducted relative to the nonlinear prebuckling state in the vicinity of the bifurcation
point to compute the lowest eigenvalue and the associated eigenvector, or mode shape.
The applied bending moment was computed for each converged prebuckling solution by
summing the moment contribution of each nodal reaction force on the end of the cylinder.

Comparison to Donnell Theory Prebuckling Solutions

As a matter of interest, and to provide comparisons between the analysis methods being
used, the prebuckling responses computed with the STAGS program are compared to the
responses computed with the three-harmonic and the five-harmonic nonlinear Donnell
analyses. Prebuckling displacements and strains are compared at the circumferential loca-
tion 6 = 0° in Fig. 2-18 for the applied end-rotation /€ _ = 1.0. The responses shown in
this figure are for the [¥45/0;]g cylinder with L/R =2 and R/H = 160 that was discussed

previously.
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Fig. 2-18 Prebuckling Response Comparison, Donnell vs. STAGS

Only minor differences are observed between the radial displacement and axial strain
responses predicted by the three analyses. The finite element data points fall in between
the predictions from the three-harmonic and five-harmonic Donnell analyses, indicating
excellent correlation with the Donnell shell theory results. The differences between the
Donnell theory and the STAGS analyses are virtually indistinguishable at other circumfer-
ential locations and at smaller values of end-rotation. The differences observed in this
comparison are typical of the other cylinders discussed in section 2.1.2.

Comments on STAGS Analysis

Other elements are available in the STAGS element library, notably the 411 and the 480"
element. The 411 element is similar to the 410 element except that it includes midside
nodes. It was found to give nearly identical results to the 410 element and therefore did not
warrant the additional computational expense associated with an increase in the number of
degrees of freedom. The 480 element is a curved nine-noded isoparametric element which
includes transverse shearing. It was found to be more flexible than the 410 element, yield-
ing slightly larger deflections for values of end-rotation in the vicinity of the bifurcation
point. Overall, it was found that the benefits of the 480 element did not outweigh the addi-

tional computational costs.

* The normal rotations are suppressed for the 480 element so that the last of Egs. (2.44) is identically zero.
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A comparison between different shell finite element formulations is presented in [48] for
various elastic shell collapse problems. It is shown that for some problems, higher order
elements, such as the STAGS 480 element, can predict collapse loads up to 10% lower
than for the STAGS 410 element. Similar results were found for the present problem.

2.2.4 Buckling Predictions for Idealized Cylinders

The three approaches to predicting the onset of buckling, discussed in sections 2.2.1
through 2.2.3, are compared here. The buckling predictions based on the Donnell theory
prebuckling analysis and the STAGS finite element analysis are compared to the classical
buckling end-rotations (see Table 2-2) in Fig. 2-19 for the six idealized cylinders. The
associated buckling moments, strains, and end-rotation values can be computed from Egq.
(2.40), Eq. (2.42), and Table 2-2. For comparison, the finite element results in Fig. 2-19
were computed relative to a geometrically linear prebuckling state in addition to the geo-

metrically nonlinear state.

It is observed in Fig. 2-19 that, overall, the Donnell theory prebuckling analysis and the
STAGS analyses predict buckling to occur within approximately £15% of the classical
predictions. The Donnell prebuckling analysis predicts the largest buckling values in
nearly every instance. The STAGS analysis with linear prebuckling predicts similar results
to the STAGS analysis with nonlinear prebuckling. It is also observed that the cylinders
with L/R = 5 tend to buckle at a slightly lower value of € than the cylinders with L/R =
2. Further examination of Fig. 2-19 indicates that the buckling end-rotations predicted by
STAGS for the [¥45/0/90]g and the [¥45/0;]5 cylinders are greater than ch while they are
lower for the [¥45/90,]g cylinders. This fact can be explained by considering the mode
shapes computed from the finite element analyses.

The mode shapes associated with the buckling end-rotations predicted by the STAGS
analysis with nonlinear prebuckling are illustrated in Figs. 2-20 and 2-21 for L/R = 2 and
5, respectively. Both a three-dimensional view of the deformed shapes and a two-dimen-
sional contour plot of the radial buckling displacements are shown in these figures. The
mode shapes were computed from a linear bifurcation analysis which was conducted rela-
tive to the nonlinear prebuckling solution at the end-rotation value indicated in the figures.

It is observed that the [¥45/0/90]g and the [¥45/0;]s cylinders, shown in (a) and (b) of
Figs. 2-20 and 2-21, respectively, buckle in a manner similar to the short wavelength mode

predicted by the classical analysis and the Donnell theory prebuckling analysis. The [+45/

48



Analysis

90,]s cylinders, however, do not buckle in the short wavelength mode but buckle in the
modes shown in (c) of Figs. 2-20 and 2-21. These modes, unlike the short wavelength
modes seen in figures (a) and (b) of Figs. 2-20 and 2-21, exhibit one axial half-wave and a
“number of circumferential waves and, as is evident from Fig. 2-19, result in lower buck-

ling end-rotations than those predicted by the classical analysis.

Furthermore, it can be seen in Figs. 2-20 and 2-21 that material anisotropy has an effect
on the mode shapes. This anisotropic effect is manifested in the skewing of the mode
shapes and is attributed to the presence of the anisotropic bending terms D, and D,. The
skewing of the mode shapes is known to be a factor in the buckling of anisotropic cylin-
ders in axial compression [89-90] and has been observed to occur in the buckling of aniso-
tropic cylinders in bending [19]. The skewing phenomenon is the least pronounced in the

[+45/0;]g cylinders and is the most pronounced in the [¥45/90,|¢ cylinders.

The modes computed in consideration of linear prebuckling conditions were found to be
similar to the modes computed in consideration of nonlinear prebuckling conditions for
these idealized cylinders. The consideration of geometric imperfections, however, can
result in significant differences between the buckling predictions using linear prebuckling
conditions and nonlinear prebuckling conditions. It is for this reason that the nonlinear

prebuckling conditions will be used when analyzing the test specimens.

- Donnell B2 STAGS, lincar BB STAGS, nonlinear
prebuckling prebuckling prebuckling
analysis
g 1.095
[:45/0/9013{ 049 [¥45/0/90]S{
1.060
[+45/0;]¢ { ; [¥45/0;]g {
[¥45/90,]1g { [ ?45/9()2]5%
0.0 Oj2 0j4 06 08 1.0 1:2 00 02 04 0:6 0:8 1.0 1:2
Q/Q_, Q/Q,,
(@)L/R=2 (B)L/R =5

Fig. 2-19 Buckling Predictions for Idealized Cylinders
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Fig. 2-21 Buckling Shapes, L/R = 5
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2.3 Postbuckling

The postbuckling behavior of cylinders in bending or axial compression is extremely
complex and is a difficult problem to solve. Postbuckling solution paths are often numer-
ous and closely spaced and are therefore highly dependent on the presence and character
of assumed initial imperfection shapes. The problem is further complicated by the fact that
the initial postbuckling solution paths are extremely unstable.

The postbuckling responses were computed with the STAGS finite element program
using a so-called path-parameter strategy to compute solutions beyond the bifurcation
point. Since displacement control breaks down in the vicinity of the bifurcation point, the
incremental applied displacement loading parameter is replaced with an increment of arc-
length along the solution path as the independent loading parameter. The arc-length incre-
ments are then automatically adjusted as a function of the solution behavior. Considerable
computational effort was required due to the small step-size increments required to over-

come local extrema.

2.3.1 Postbuckling Response of Idealized Cylinders

The idealized cylinders with L/R = 2 (see sections 2.1.2 and 2.2.4) were analyzed to
gain insight into the bending postbuckling behavior. Geometric shape imperfections in the
form of the first buckling mode, shown in Fig. 2-20, were introduced as an idealized
imperfection to facilitate the calculations. The imperfection amplitudes were assumed to
be 20% of the cylinder wall thickness.

Relatively successful postbuckling analyses were conducted for the [+45/0/90]s and the
[¥45/0,]g cylinders. Solution difficulties were encountered in the analysis of the [¥45/
90,]g cylinder. The postbuckling behavior is presented for the [¥45/0/90]g and the [+45/
90,15 cylinders to illustrate some features of the postbuckling behavior and the difficulties

encountered in obtaining the numerical solutions.

The computed moment vs. end-rotation relations are depicted for the [¥45/0/90]g and the
[745/90,]g cylinders in Figs. 2-22 (a) and (b), respectively. The insets in these figures pro-
vide details of the postbuckling response near the bifurcation point. The prebuckling
moment vs. end-rotation relations are linear up to the bifurcation buckling point and have
slope 54. The bifurcation point is labeled as point A in the figures. Comparing the bifurca-
tion buckling end-rotation in these figures, denoted as Q£ "’r in the figures, to those reported
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(a) [¥45/0/90]g cylinder with R/H =160, L/R =2, and shape imperfection in form of
the 1st buckling mode, amplitude equal to 20% of wall thickness
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(b) [¥45/90,]5 cylinder with R/H = 160, L/R = 2, and shape imperfection in form of the
1st buckling mode, amplitude equal to 20% of wall thickness

Fig. 2-22 Predicted Postbuckling Moment vs. End-Rotation Characteristics
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in Fig. 2-19 (a) indicates that the buckling resistance of the idealized [¥45/0/90]g and [*¥45/
90,]g cylinders with L/R =2 is reduced by 34% and 21%, respectively.

The initial slope of the postbuckling moment vs. end-rotation relation, s4p, is an indica-
tor of whether buckling will occur gradually or suddenly [89]. A positive slope indicates a
gradual buckling process and a negative slopes indicates a sudden, and possibly cata-
strophic, buckling process. The insets of Fig. 2-22 indicate a slope with a high negative
value, suggesting that buckling will occur suddenly for these cylinders. The postbuckling
solution along path A-B represents an unstable unloading path. The instability of this path
is indicated in the STAGS analysis by the appearance of a single negative root in the tan-
gent stiffness matrix. The point labeled B represents a minimum along path A-B.

For the [¥45/0/90]g cylinder shown in Fig. 2-22 (a), further application of end-rotation
results in the stable loading path B-C. The stability of this path is characterized by zero
negative roots in the tangent stiffness matrix. Comparing the slope sg¢ of path B-C to the
prebuckling slope s4 in the inset figure, indicates that a change in the cylinder bending
stiffness has taken place. Point C represents a second bifurcation point. The solution 1s
again unstable along path C-D until the minimum point D is reached. The end-rotation is
further increased along the stable path D-E until the third bifurcation point £ is reached.
The slope of path D-E, spg, indicates a further change in the cylinder bending stiffness.
Solutions difficulties are encountered beyond point £ and the analysis is halted.

For the [¥45/90,]g cylinder shown in Fig. 2-22 (b), numerous attempts to increment the
end-rotation beyond point B leads to the appearance of a number of negative roots in the
tangent stiffness matrix, signaling the presence of alternate postbuckling solution paths.

The solution is no longer clearly defined and the analysis is halted.

The deflection patterns corresponding to the segments of the scallop-shaped postbuck-
ling paths, labeled B-C and D-E in Figs. 2-22 (a), are illustrated in Fig. 2-23. The three-
dimensional deformed shapes and two-dimensional contour plots shown in this figure indi-
cate that large inward buckles have developed on the compression side of the cylinder. The
buckles become deeper and more pronounced from path B-C to path D-E. It is clear that
the presence of the buckles alters the cylinder cross-section moment of inertia, accounting

for the different postbuckling slopes sg¢ and spg-
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[+45/0/90]s cylinder with R/H =160, L/R = 2, and shape imperfection in form of the
1st buckling mode, amplitude equal to 20% of wall thickness

Fig. 2-23 Predicted Postbuckling Deflection Patterns

2.3.2 Comments on Postbuckling Analysis

It must be stressed that the bifurcation buckling values and the postbuckling behavior are
highly sensitive to assumed imperfections shapes and amplitudes. The above examples are
intended to highlight some of the features of the postbuckling behavior that can be
expected in the experiments. The results may differ substantially for other assumed imper-
fection shapes and amplitudes. Further, the relative success of a postbuckling analysis may
be affected by various finite element modeling issues such as mesh density and element

aspect ratio.

As mentioned previously, the finite element analysis was conducted using arc-length
control when the displacement control approach failed at the bifurcation point. Experi-
mentally, buckling could take place in a perfectly rigid test fixture along either the load
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control path or the displacement control path shown in Fig. 2-24. With either load or dis-
placement control, buckling would cause a sudden jump to a postbuckling equilibrium
position on path B-C or D-E as shown. A flexible test fixture, however, would cause buck-
ling to occur along the diagonal path due to the sudden change in stiffness of the cylinder
relative to the test fixture [91]. The arrows in the figure indicate a number of potential
postbuckling equilibrium positions. The actual equilibrium position depends on the initial
conditions, relative stiffness of the fixture, and the dynamic characteristics of the specimen

and fixture.
1.0 E—\
bifurcation ¢:> C_\
point, A
0.8} I A\
o < 0 > load
06 i control
M ) flexible fixture
M, 0.4 displacement
control
0.2+
0.0 : ‘ ‘
0.0 0.5 1.0 1.5

Q/Q

cr

Fig. 2-24 Potential Buckling Paths

The postbuckling behavior of the test specimens will be discussed in Chapter 4.
Although analytical representations of the actual measured surface shape imperfections
were used in the analyses of the specimens, it will be seen that postbuckling solutions for
the test specimens could only be computed with a mixed rate of success due to persistent
numerical difficulties such as those described in Fig. 2-22 (b).

This chapter has provided an indication of what might be expected from the bending
response of thin-walled composite cylinders. The prebuckling responses have been studied
for three laminates and two cylinder geometries. The influence of non-ideal boundary con-

ditions and geometric imperfections on the prebuckling responses has been investigated.
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Buckling has been discussed and the ramifications of the complex postbuckling response
character has been presented. Attention now turns to the description of the test apparatus
and the test cylinders. Later, attention is focused on comparing the responses just dis-

cussed with the experimental measurements and observations.
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3. Description of Experiment

Several major tasks were undertaken in preparation for the experimental component of
the present investigation. The first task was to develop the specifications for the graphite-
epoxy test specimens and test apparatus. Size considerations resulted in a nominal speci-
men diameter of 12 inches and an eight-ply wall construction. The size specifications
determined a minimum test fixture bending capacity of 135,000 in.-1bs. The second task
was to develop a functional and economical design concept for the test apparatus and spec-
imens. Key fabrication techniques and design concepts were evaluated and proven before
the final design was given to a machine shop for fabrication. After fabrication, minor fix-
ture adjustments were made based on the test loading of a comparatively thick-walled alu-

minum ‘dummy’ cylinder up to the fixture maximum capacity of 315,000 in.-1bs.

The preparatory tasks resulted in a 4-ft.-long aluminum mandrel used for the tape layup
and curing of the cylinders, six 12-in.-diameter graphite-epoxy test specimens, a cylinder

bending fixture, and other associated hardware and procedures.

Details of the test apparatus, specimens, and testing procedures will be described in the

following sections.

3.1 Apparatus*

The load introduction concept posed a challenging test fixture design problem. The ques-
tion arose on how to introduce a bending moment into the test specimen while precisely

locating and gripping the specimen ends. The solution to this problem was to locate the

* The use of trademarks or names of manufacturers in this study is for accurate reporting and does not con-
stitute an official endorsement, either expressed or implied, of such products or manufacturers by the author,
Virginia Tech, or the National Aeronautics and Space Administration.
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test specimen in the annular region between a set of inner and outer loading rings, using a
low-temperature melting point alloy* as a potting compound. Also, stepped fiberglass tabs
on the specimen provided the means with which to react tensile loads. A schematic of the
loading concept is shown in Fig. 3-1, with the details shown in Fig. 3-2. A bending
moment, M, is applied to the test specimen and loading rings as shown. Tensile loads are
transferred from the inner and outer loading rings to the fiberglass tabs and cylinder wall
through shearing of the potting compound. Compressive loads are transferred into the cyl-
inder ends through direct contact with the test fixture, in addition to the shearing of the cyl-

inder wall.

The schematic of Fig. 3-2 illustrates details of the inner and outer loading rings, the
stepped fiberglass tabs, and the low-temperature melting point alloy potting compound.
The potting compound mechanically locks the stepped fiberglass tabs on the cylinder in
between the loading rings. The circumferential grooves in the loading rings prevent the

cylinder wall outer loading ring

inner loading ring —

F

M G-—t+-—--—-—- L ____________ - — - — M

Fig. 3-1 Schematic of Test Specimen with Loading Rings

* Cerrobend® and Belmont Alloy 2505 were used and have a melting point of 158 °F. Tension and com-
pression tests of three 0.45 in. x 2.0 in. x 7.0 in. bars yielded average values of approximately 1.55 Msi for
Young’s modulus, 0.36 Msi for the shear modulus, and 0.42 for Poisson’s ratio.
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cylinder from being pulled out in tension by providing a surface for potting compound to
react against. This method has several advantages over direct mechanical attachment
methods. Some of these are that (i) the gripping of the specimen is relatively uniform, (i1)
additional precision machining of the specimen is not required, (iii) re-use of potting com-
pound is possible, and (iv) ease of removal of the failed specimen by reheating the potting

compound.

Schematic top and side views of the cylinder bending fixture are shown in Fig. 3-3 (a)
and (b), respectively. The fixture is a symmetric design that applies bending equally at
each end of the test specimen by a set of hydraulic jacks. The entire fixture is mounted to a
slotted surface table to accommodate a wide range of specimen lengths. The loading rings
are bolted to the back plates with the test specimen ends aligned with the pivot axis as
shown in Fig. 3-3 (a). Load is transferred from the hydraulic jacks through the loading pins
and loading grips into the moment arm and back plate assembly. The back plate assembly
rotates about the pivot pins, inducing a state of pure bending in the test specimen. The top
of the cylinder is in compression and the bottom is in tension as shown in Fig. 3-3 (b). The
horizontal braces located between the supports are intended to inhibit relative axial motion

/— back plate

outer loading ring [
stepped fiberglass tabs

bolts
Y 2

cylinder wall

— load ---—» -+—p Joad

) e

low-temperature —/
melting point alloy
potting compound

circumferential J """"l

R grooves in
loading rings

inner loading ring W

Fig. 3-2 Details of Loading Ring
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between the ends of the cylinder. Pressure is supplied to the two hydraulic jacks by means
of a hydraulic pump, and is monitored by a digital pressure transducer. Equal pressure is
achieved in both jacks through the use of a flow divider'. The end-rotations, Ql and Qz,
are measured independently at each end of the specimen by tracking the motion of the can-
tilevered rotation measurement tabs with the displacement transducers D, through D, as
shown in Fig. 3-3 (b). Tension and bending of the four fixture supports is monitored by the
longitudinal strain gages mounted back-to-back near the base of each support as shown.

The primary fixture components were fabricated from A514-70 steel plate. Secondary
components were fabricated from 1018 steel bar stock, C1144 steel, and A-36 steel plate.
The loading rings were machined from 6061-T6 aluminum. The bending fixture and load-

ing rings were fabricated under contract to LaRC by Advex Corp. of Hampton, Virginia.

3.2 Specimens

Six eight-ply graphite-epoxy specimens were fabricated and tested. A quasi-isotropic
[745/0/90]5 layup and two orthotropic layups, [+45/0;]s and [¥45/90,]g, were studied.
The two orthotropic layups can be regarded as axially-stiff and hoop-stiff, respectively.
The nominal radius of each specimen was 6 inches. Five specimens had a length-to-radius
ratios of 2 and one specimen had a length-to-radius ratio of 5. The specifics of the speci-
men fabrication, properties, and surface shape measurements are provided in Appendix D,
Appendix E, and Appendix F, respectively. The specimen identification codes, layups, and
geometric parameters are summarized in Table 3-1.

All test specimens were fabricated from 12 in.-wide Hercules AS4/3502 graphite-epoxy
prepreg tape, as described in Appendix D. The prepreg tape was layed-up on an aluminum
mandrel by hand with the aid of a belt-winder. Curing took place in an autoclave using the
manufacturer’s recommended temperature, pressure, and vacuum cycles. The specimens
were cut from four 48 in.-long cylinders (CYL-1, CYL-2, CYL-3, and CYL-4 in Table 3-
1) that were fabricated by the Materials Processing and Development Section at LaRC.
The specimen identification code numbers in Table 3-1 identify the 48 in.-long cylinder

* Fluid Controls, Inc., flow divider model 2V13-4-3-10-S.
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Table 3-1 Summary of Test Specimen Dimensions

Specimen a b
Identification | . el L,in, | Average® | Average™ | ;o | p oy
Code Construction R, in. H,in.
CYL-1A 12.0 5.993 0.0374 2.0 160.2
CYL-1B [+45/0/90])g 12.0 5.996 0.0375 2.0 160.0
CYL-2 30.0 5.994 0.0368 5.0 162.9
CYL-3A [+45/0;]g 12.0 5.961 0.0381 2.0 157.5
CYL-4A 12.0 5.997 0.0369 2.0 162.5
[¥45/9051¢
CYL-4B 12.0 5.995 0.0358 2.0 167.5

a. Computed from surface shape measurements, see Appendix F.
b. Average of 48 measurements, sec the section “Wall Thickness Measurement” in Appendix E.

and the axial location (‘A’ or ‘B’) from which each specimen was cut. The details of the
wall thickness measurements, mechanical properties, and laminate stiffnesses of the test

specimens are summarized in Appendix E.

A C-Scan of each of the four 48 in.-long cylinders was conducted to insure an initial
defect-free condition. The number of originally proposed test specimens was reduced to a
total of six specimens after a manufacturing defect was discovered in CYL-3 (see the sec-
tion “Nondestructive Evaluation” in Appendix D). Fiberglass cloth tape was used to form
the tabs on the specimen ends. The tabs were hand layed-up directly on the graphite-epoxy
cylinders and cured at room temperature after cutting each cylinder to the approximate
specimen length. The cylinder ends were then machined flat and parallel.

The specimens were instrumented after the fabrication procedure was completed. The
interior of each specimen was gaged prior to mounting the loading rings as a matter of
convenience. The details of the potting procedure are provided in the section “Specimen
Potting” in Appendix D. After potting the specimens, the outer surface shape was accu-
rately measured and analyzed according to the procedures discussed in Appendix F. With
the loading rings mounted and the outer surface measured, the exterior surface was gaged.

Each specimen was carefully lifted into position in the bending fixture with the aid of an
overhead crane. Forty-eight loading ring bolts on each end of the cylinder were incremen-
tally tightened in a star-pattern to a final torque of 80 ft-1bs. The fixture was then bolted to
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the slotted surface table in preparation for testing. The specimen was ready to be tested

once the instrumentation and data acquisition setups were completed.

The tabbing and machining of the specimens, and mounting of the loading rings was per-
formed under contract to LaRC by Advex Corp. of Hampton, Virginia. Surface measure-
ments were preformed by the Quality Assurance and Inspection Office laboratory at
LaRC. The strain gages were mounted by Modern Machine and Tool Co., Inc. of Newport

News, Virginia, also under contract to LaRC.

3.3 Instrumentation and Data Acquisition

A typical test setup is illustrated in Fig. 3-4. An average of 167 channels of data were
acquired electronically during each bending test. The data were acquired at the rate of
approximately one reading of all channels per second. Surface strains were measured with
pairs of back-to-back strain gages distributed over the surface of each specimen. Applied
forces were measured with a calibrated load cell and displacements were measured with
direct current differential transformers (DCDT’s). All tests were video recorded and still
photos were taken before and after loading. Acoustic emissions were recorded during the
testing of the CYL-2, CYL-4A, and CYL-4B specimens. A shadow moiré interferometry
setup was used during the testing of the CYL-1A specimen but was not used in subsequent
tests. The surface of some specimens was painted white and marked with a grid pattern to
improve visualization of the postbuckling deformation patterns. The instrumentation setup

for each specimen is summarized in Table 3-2.

Selected radial displacement measurements were made during the testing of specimens
CYL-1A and CYL-2. The displacements were measured at the locations specified in
Table 3-3 and are shown schematically in Fig. 3-5. It should be noted that the displacement
measurements are relative to the surface table and therefore include net vertical deflections

of the test fixture.

Back-to-back surface strains were measured at over 60 locations in each cylinder. A typ-
ical strain gage pattern is shown in Fig. 3-6. Similar gage patterns were used for all speci-
mens with the exception of CYL-1A. The gage pattern for CYL-1A was symmetric about
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Fig. 3-4 Typical Test Setup

Table 3-2 Instrumentation Summary

Specimen | Total No. No.of |DCDT’s?| Acoustic | Shadow Specimen

Identification | of Data Strain Emissions Moiré Surface
Code Channels Gage
Channels
CYL-1A 172 136 6 no yes partially®
: white

CYL-1B 155 124 0 no no white
CYL-2 169 136 2 yes no white w/grid
CYL-3A 159 128 0 no no white
CYL-4A 167 136 0 yes no white w/grid
CYL-4B 167 136 0 yes no white w/grid

a. For measurement of selected radial displacements.
b. Only region under moiré grating was painted white.
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Table 3-3 Radial Displacement Measurement Locations

DCDT d d, d, dy ds dg
Location, . . . . . .
x/L. 0 -0.4,0 -0.3,0° 1-0.167,0° | 0.0,0 0.0, 180° | -0.3, 180
CYL-1A yes yes yes yes yes yes
CYL-2 no no no yes yes no

x/L = 0.0 but had approximately the same number of gages as the pattern shown in Fig. 3-
6. It can be seen from strain gage pattern that a majority of the gages were oriented axially
with the circumferential locations of 0" and 180° being instrumented most heavily.

The applied bending moment was computed from the average load in the hydraulic
jacks, which was measured with the digital pressure transducer, multiplied by the length of
the moment arm. The average end-rotation was computed from the rotation measurement
tabs shown in Fig. 3-3 (b) from the simple relation

Q:Q‘ggz (3.1)
d, d,
dl‘h{g;id“
O ‘ o) Io) o)
N\
A1
0% 777

Fig. 3-5 Radial Displacement Measurement
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It was found, however, that this measure of end-rotation was sensitive to minor distortions

of the loading rings and test fixture and was therefore not always accurate.

Improved end-rotation measurement accuracy was achieved by measuring the end-rota-
tion directly from the strain gages on the specimen. Average end-rotations were computed
from a least-squares analysis of the normalized axial midsurface prebuckling strains,
ez /€_,, plotted as a function of the normalized distance to the cylinder neutral axis, Z/R.

The form of this relation is
Z/R = §- €, /ecr, (3.2)

where s is the slope of the best-fit line computed from the least-squares analysis, com-
puted at a given applied bending moment, M. A typical plot of this relation is shown in
Fig. 3-7. This figure indicates the maximum axial midsurface compressive strain, given by

the expression eron = €,,/s, occurs at the location Z/R = 1. The end-rotation applied

ax
to the specimen was then computed from Ef;ax and Eq. (2.42) as

L o

The least-squares analyses were carried out at a number of axial locations and averaged
to obtain the overall applied end-rotation. Traces of the entire moment vs. end-rotation
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relation were obtained by repeating the above calculations for each increment in applied
moment. This method was found to provide an excellent measure of the applied end-rota-

tion.
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Fig. 3-7 Prebuckling Rotation Measurement

It should be noted that Eq. (3.3) could only be used to compute the prebuckling end-rota-
tions since the strain relation shown in Fig. 3-7 was no longer linear after buckling. To
obtain the moment vs. end-rotation relation beyond buckling, the end-rotation given by
Eq. (3.1) was modified to compensate for any slight deformations of the loading rings
encountered during prebuckling. The modification was achieved by scaling Eq. (3.1) to
coincide with the prebuckling end-rotation computed from Eq. (3.3). An appropriate scale
factor, sf, was computed from the ratio of the slope of the measured moment vs. end-rota-
tion relation, using Eq. (3.3), to the slope of the measured moment vs. end-rotation rela-
tion, using Eq. (3.1). The slopes of these moment vs. end-rotation relations were
determined by a separate least-squares procedure. The resulting end-rotation, which was
used to compute the end-rotation over the entire range of loading, is given by the relation

Q1 +92
Q= sf —5- (3.4)
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3.4 Procedure

The cylinder bending tests were conducted in the Aircraft Structures laboratory at LaRC.
Quasi-static loading was achieved by manual adjustment of the flow rate of the hydraulic
pump. Loading was increased until buckling of the specimen occurred. The load was held
constant after buckling to observe the condition of the test specimen and to mark the defor-
mation pattern. Seemingly undamaged specimens were unloaded, re-buckled, and loaded
until failure. Specimens with prebuckling matrix cracking were buckled and loaded until
ultimate failure occurred. The deformation patterns were marked on all cylinders with the

exception of the first cylinder tested, specimen CYL-1A.
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4. Results

The measured, observed, and predicted results of the individual specimens are presented
according to the three major response categories of prebuckling, buckling, and postbuck-
ling. The measured specimen moment vs. end-rotation relations are presented first as a

guide to the overall observed bending behavior.

The prebuckling results are presented in the form of displacement and axial strain
responses. Analytical prebuckling solutions were computed using the nonlinear Donnell
analysis for the perfect cylinder geometries and using the STAGS analysis for the imper-
fect cylinder geometries, as described in sections 2.1 and 2.2.3, respectively. Experimental

displacements and strains were measured using the methods described in section 3.3.

The measured buckling moments, end-rotations, and strains are compared to the pre-
dicted values. The predicted buckling values and buckling shapes were computed with the
STAGS finite element program for perfect and imperfect cylinder geometries, as discussed
in section 2.2.3. The measured shape imperfections, described in Appendix F, were

included in the analysis of the imperfect cylinder geometries.

The observed postbuckling defiection patterns and strain profiles are presented and com-
pared to predictions. The predicted postbuckling responses were computed using the
STAGS program and the measured shape imperfections.

The classical buckling parameters are used to normalize the bending moment, end-rota-
tion, and strain results. These parameters were computed for each specimen from Egs.
(2.40), (2.41), and (2.42) using the geometry and stiffness parameters presented in
Table 3-1 and Appendix E. The individual buckling parameters are summarized in
Table 4-1.

70



Results

Table 4-1 Classical Buckling Parameters for Test Specimens

Specimen o) £

Identification C Wall L/R _MC” o er

Code onstruction in.-lbs radians (deg) HE
CYL-1A 2 139,550 0.0036 (0.207) 3,610
CYL-1B [¥45/0/90] 2 139,998 0.0036 (0.207) 3,617
CYL-2 5 139,550 0.0090 (0.518) 3,610
CYL-3A [+45/05] 2 95,809 0.0017 (0.098) 1,697
CYL-4A 2 144,378 (0.0084 (0.484) 8,383

[¥45/90,]g

CYL-4B 2 140,298 0.0081 (0.465) 8,114

4.1 Measured Specimen Moment vs. End-Rotation Relations

As a view of the overall behavior, the measured moment vs. end-rotation responses are
compared for four representative specimens in Fig. 4-1. The bending moments and end-
rotations in this figure have been normalized by the classical buckling moment and end-
rotation of the quasi-isotropic specimen CYL-1A (see Table 4-1). The moment and rota-
tion normalization factors are denoted as M7“%** and Q7425 respectively. The segments
of the moment vs. end-rotation relation corresponding to the prebuckling, buckling, and

postbuckling responses are identified in the figure.

The prebuckling moment vs. end-rotation relations shown in Fig. 4-1 are linear up to the
buckling point for each specimen. The prebuckling slopes of each specimen, and hence,
the bending stiffnesses, vary according to the individual laminate inplane stiffnesses, E,
(see Appendix E). The ratio of the bending stiffness of the [+45/07]s specimen and the
[+45/90,]s specimens to the bending stiffness of the quasi-isotropic specimen is 1.45 and
0.45, respectively.

The value of end-rotation at the bifurcation points are denoted as Qif” in Fig. 4-1. The
corresponding buckling moment and compressive buckling strain values are M and
eifp , respectively. These values were measured at an instant prior to buckling by the meth-
ods described in section 3.3 and are reported in Table 4-2 for all specimens.

The buckling events were indicated by a distinct ¢ popping’ sound and the appearance of
large diamond-shaped buckles on the compression side of the cylinder. The moment vs.
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Fig. 4-1 Normalized Measured Moment vs. End-Rotation Comparison

end-rotation relation corresponding to the buckling events exhibits a substantial decrease
in the bending moment and an increase in the end-rotation. This sudden increase in end-
rotation is attributed, in part, to the flexibility of the test fixture (see section 2.3.2). How-
ever, the sudden increase in end-rotation is also due to the inability to maintain complete
control of the hydraulic jacks when the cylinder suddenly changes configurations at buck-
ling.

The postbuckling loading paths reflect a significant reduction in bending stiffness due to
the effect of the large diamond-shaped buckles on the cylinder cross-section moment of
inertia. Further loading in the postbuckling range was accompanied by pronounced defini-
tion of the buckles and subsequent visible and audible material damage. Changes in the
postbuckling deflection shapes, referred to here as secondary postbuckling shapes, were
visible in some instances and were accompanied by an additional ‘popping’ sound. A sec-
ondary postbuckling shape was observed before the ultimate failure of the [¥45/0,]g spec-
imen. The deflection patterns corresponding to the points labeled A and B on the
postbuckling equilibrium paths in Fig. 4-1 will be described in section 4.4.1.
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Table 4-2 Measured Buckling Parameters for Test Specimens

Specimen exp exp exp
Identification C Wall . L/R M.", ch ) Er o
Code onstruction in.-lbs radians (deg) UEe
CYL-1A 110,660 0.0030 (0.172) 3,000
[+45/0/90]g
CYL-1B 119,280 0.0032 (0.183) 3,170

F45/0/90), L/R =2 | 114970 | 00031(0.178) | 3,085

[+45/0/90]¢ 5 100,620 0.0065 (0.372) 2,610

CYL-3A [(¥45/0, ] 2 89,390 0.0016 (0.092) 1,550

CYL-4A 2 99,040 0.0060 (0.344) 6,040
[¥45/905]g

CYL-4B 2 102,980 0.0063 (0.361) 6,290

(58]

r [¥45/90,]5, L/R = 101,010 | 0.0062(0.353) | 6,165

The individual measured specimen moment vs. end-rotation relations are summarized in
Figs. 4-2 (a) through (f). The moment and end-rotation values in these figures are normal-
1ized with respect to the appropriate classical buckling moment and end-rotation values
given in Table 4-1. The number of times each cylinder was loaded to buckling and beyond
is indicated in the appropriate figure. Figs. 4-2 (a) through (c) show that the [¥45/0/90]¢
specimens CYL-1A, CYL-1B, and CYL-2 were loaded until buckling occurred, unloaded,
and then re-loaded until failure. Specimen CYL-1B was buckled three times. Fig. 4-2 (d)
indicates that the [¥45/0,]g specimen CYL-3A was buckled, loaded until visible material
damage occurred, unloaded, and finally re-loaded to assess the bucking resistance in the
presence of material damage. Figs. 4-2 (e) through (f) indicate that the [+45/90,]g speci-
mens CYL-4A and CYL-4B were buckled once and loaded to failure.

Specimens that were unloaded just after buckling the first time, snapped back into their
initial circular shape without visual evidence of material damage. The postbuckling deflec-
tion patterns were repeated upon re-buckling, the buckling moment being somewhat lower
than with the first buckling test. All cylinders fully recovered their initial circular shape,
regardless of any material damage, upon unloading after ultimate failure occurred.

The predicted moment vs. end-rotation relations will be discussed in section 4.4.
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4.2 Prebuckling Responses

The prebuckling results are presented for two values of end-rotation corresponding to
45% and 90% of the experimental buckling end-rotation reported in Table 4-2, i.e.
Q/ Qifp = 0.45 and 0.90. Measured values, where available, are compared to analytical
predictions based on the perfect and the imperfect cylinder geometries.

4.2.1 Displacement Responses

Prebuckling displacement profiles are illustrated in Fig. 4-3 for the [¥45/0/90]g specimen
CYL-1A. The radial displacements at 8 = 0° and 180° are shown in Figs. 4-3 (a) and (b),
and the tangential displacements at © = 90" are shown in Fig. 4-3 (c). The displacements
are denoted as wy, wyg, and vy, respectively, and are normalized with respect to the cyl-

inder wall thickness, H, as in previous discussions in section 2.1.2.

A comparison between the displacement responses of the perfect and imperfect cylin-
ders in Fig. 4-3 indicates that of the displacements shown, the measured shape imperfec-
tions have the largest influence on w,. The presence of imperfections tends to perturb the
responses of the perfect cylinder at several axial locations, particularly at the higher value
of end-rotation, Q/Q* = 0.90. The w,y, displacements are only slightly influenced by

cr
the imperfections and the v, displacements remain unaffected.

The measured radial displacements are compared to the predicted profiles for w, and
Wigo in Figs. 4-3 (a) and (b). The measured displacements were adjusted to compensate
for vertical deflections of the test fixture. The adjustments were achieved by adding an
appropriate constant to each of the measured displacement profiles. Each constant was
computed from the difference between the measured and predicted displacement value at

the center of the perfect cylinder, at the given value of end-rotation.

Overall, the measured displacements in Figs. 4-3 (a) and (b) are in good agreement with
the predicted displacement profiles, particularly at the lower value of end-rotation,
Q/ Qi:” = 0.45. The measured w, displacements tend to agree more closely with the pre-
dicted displacements for the imperfect cylinder, especially near the end of the cylinder.
The largest discrepancies between the measured and predicted profiles occur at the axial
location x/L = —0.3 on the compression side of the specimen, at the value of end-rotation
of Q/Qifp =(0.90.
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The predicted displacement responses for the remaining five specimens are presented in
Figs. 4-4 through 4-8. The displacement profiles were not measured for these specimens.
The predicted deflection shapes for the perfect specimens are similar to those of the ideal-
ized cylinders discussed in section 2.1.2. As with specimen CYL-1A, the w, displace-

ments are most sensitive to the measured shape imperfections. The degree to which the w,

displacements are affected by the imperfections depends on the shape characteristics of the

particular measured shape imperfection. This is demonstrated by comparing the w;, dis-
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Fig. 4-3 Displacement Response, CYL-1A, [+45/0/90]g, L/R = 2
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placements for the [¥45/90,]g specimens CYL-4A and CYL-4B. Fig. 4-7 (a) indicates that
the w,, displacements for specimen CYL-4A are moderately affected by the imperfection.
Fig. 4-8 (a) demonstrates that specimen CYL-4B is considerably affected by the shape
imperfection, in comparison to specimen CYL-4A, particularly at the higher value of end-
rotation. Similar behavior is observed with the [+45/0/90]g specimens CYL-1A and CYL-
1B. As before, the w4, displacements are slightly influenced by the presence of the shape
imperfections and the v, displacements are unaffected.
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H oa oot \
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Fig. 4-4 Displacement Response, CYL-1B, [+45/0/90]g, L/R = 2
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4.2.2 Strain Responses

Measured and predicted axial surface strain profiles are illustrated for each test specimen

in Figs. 4-9 through 4-14. The strains are normalized with respect to the appropriate classi-

cal axial buckling strain, €__in Table 4-1, and are plotted as a function of the normalized

axial coordinate, x/L, for one half of each cylinder. The strains are presented for the cir-
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cumferential locations 6 = 0°, 45°, 67.5°, 90°, 135°, and 180°". The thickness locations in
these figures correspond to the outer surface, midsurface, and inner surface of the cylinder
wall, i.e. z/H = +0.5, 0.0, and —0.5. The midsurface strains are the average of the outer

and inner surface strains.
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Fig. 4-6 Displacement Response, CYL-3A, [+45/0,]g, L/IR = 2

* . ~ . . . .

The strains computed from the finite element analysis were obtained at the element centroids. The ele-

ment centroids were located 1.875° from the circumferential locations of the measured data and the Donnell
analysis, resulting in a slight shift in the results at some circumferential locations.
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The boundary layer behavior discussed previously in section 2.1.2 is clearly evident in
these figures. The shape and strength of the strain profile in the boundary layer region is
determined by the magnitude of the applied end-rotation and the circumferential location.

“The boundary layer region is most pronounced at the locations of maximum compressive

and tensile strains, 8 = 0° and 180°, respectively.

As with the displacement responses, comparing the perfect cylinder responses to the

imperfect cylinder responses demonstrates that the measured shape imperfections exert the
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Fig. 4-7 Displacement Response, CYL-4A, [¥45/90,]g, L/R =2
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greatest influence on the strains on the compressive side of the cylinders at the larger of the
two values of end-rotation. The influence of the imperfections is diminished as the tensile
side of the cylinder is approached in the circumferential direction. For all cylinders, the
strain data reflect the predicted geometrically nonlinear strain boundary layer behavior and
show good overall agreement with the predicted responses. The measured strains compare
more favorably to the imperfect cylinder predictions than the perfect cylinder predictions
on the compressive side of the cylinders. The measured and predicted responses are in
excellent agreement when Q/Q°* =(.45. Some discrepancies are evident when Q/ Qe
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= 0.90. In most instances, these discrepancies are observed, to some extent, at the outer
and inner surface of the cylinder wall, in the region of the peak boundary layer strains near
the cylinder ends. The severity of these discrepancies is specimen dependent and appears
to be most pronounced for the [¥45/0;]g specimen, as indicated by the square symbols in
Fig. 4-12 (b) and (f). Although the oscillatory character of the compressive boundary layer
region is correctly predicted for this specimen, the magnitude of the strains is significantly
under-predicted. Several potential sources of discrepancies will be discussed in Chapter 5.

The circumferential variation of the boundary layer strains, evident in the strain profiles,
reflects the variation of the boundary layer deformations depicted in Fig. 2-6. The axial
oscillations of the compressive surface strains attenuate rapidly in the circumferential
direction, with all evidence of the boundary layer vanishing at 6 = £90°. A boundary
layer builds up again on the tensile side of the cylinder.

4.2.3 Prebuckling Material Failure

It was mentioned previously in section 2.1.6 that first-ply failure during prebuckling was
unlikely to occur in the idealized [¥45/0/90]g and the [¥45/0;]g cylinders. First-ply matrix
failure in the [¥45/90,]g cylinders, however, was found to be highly probable. Matrix fail-
ure in a 90° ply, in the form of matrix cracking, was predicted to occur on the tension side

at the end of these idealized cylinders.

A first-ply failure analysis was conducted for the [¥45/90;]g specimens, with no geomet-
ric imperfections included, to obtain an estimate of the value of the applied end-rotation at
the onset of matrix cracking. The initial cracking and popping sounds were clearly audible
at approximately 90% of the experimental buckling end-rotation, a value of end-rotation
20% higher than predicted. However, the matrix cracking did not appear to appreciably

influence the measured bending responses.

4.3 Buckling Responses

The STAGS finite element buckling predictions are reported in Table 4-3 for the perfect
geometry specimens and in Table 4-4 for the imperfect geometry specimens. The pre-
dicted buckling moment, end-rotation, and strain values in these tables are denoted as M{e,,

Q£ ¢, and e{: ¢, respectively. The values of M{i and Q£ ¢ were computed using the methods
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described in ““Analysis Procedure” in section 2.2.3. The values of e’; i were computed from
Q¢ and Eq. (2.42).

Table 4-3 Predicted Buckling Parameters for Perfect Test Specimens

Specimen fe e e
Identification C Wall L/R Me,. Qﬁf’ Ei”
Code onstruction in.-1bs radians (deg) HE
CYL-1A 2 143,310 0.0037 (0.212) 3,700
[?45/0/90]5
CYL-1B 2 142,900 0.0037 (0.212) 3,700
[#45/0/901s, L/R =2 | 143,105 | 0.0037(0212) | 3,700
CYL-2 5 141,160 0.0090 (0.531) 3,710
CYL-3A [¥45/0;] 2 103,870 0.0018 (0.105) 1,830
CYL-4A 2 134,100 0.0076 (0.437) 7,620
[145/902]5
CYL-4B 2 132,530 0.0075 (0.430) 7,510
450,05, L/R =2 | 133315 | 0.0076(0438) | 7365

Table 4-4 Predicted Buckling Parameters for Imperfect Test Specimens

Specimen fe fe P
Identification C Wall . L/R Moy, ch’ cr’
Code onstruction in.-1bs radians (deg) pe
CYL-1A 2 132,570 0.0034 (0.197) 3,430
[¥45/0/90]¢
CYL-1B 2 130,130 0.0034 (0.193) 3,360
=2 | 131,350 00034( 3305
5 122,650 0.0081 (0.463) 3,230
[+45/0,]5 2 104,590 0.0019 (0.107) 1,860
2 125,390 0.0073 (0.415) 7,250
[+45/907]5
2 118,320 0.0068 (0.391) 6,820
[¥45/905]5, L/R =2 121,855 | 0.0071(0403) | 7,035

The measured buckling end-rotations are graphically compared to the predicted values
in Fig. 4-15. The end-rotation values in this figure are normalized with respect to the
appropriate classical buckling end-rotations, Q_, given in Table 4-1. Tt is seen from Fig.
4-15 that the classical and the finite element predictions over-estimate the measured buck-
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ling values in all cases. The finite element buckling analyses of the perfect specimens
over-estimate the measured values by 17% to 42%. As was evident with the prebuckling
results, the measured shape imperfections can couple with the prebuckling displacement
and strain responses and cause a reduction in the predicted buckling resistance of the spec-
imens. Correlation between the predictions and the experiment is appreciably improved in
most instances by incorporating the measured shape imperfections. The buckling predic-
tions of the imperfect specimens over-estimate the measured buckling end-rotations by 6%
to 20%. It is interesting to note that the buckling prediction for the [¥45/0,]g specimen
increases slightly when including the shape imperfections. This effect may be attributed to
a stabilizing effect due to the radially outward prebuckling deflections on the compression

side of the cylinder shown in Fig. 4-6 (a).

i~ Experiment
STAGS, perfect (% difference)
I STAGS, imperfect (% diffcrence)

CYL-3A $1.080 (18%)

% 1.098 (20%)

00 02 04 06 08 10 12
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0.949 (14%)

L

5 0.877 0.721

CYL-1B { s 1022 (17%) CYL-4A 0.909 (26%)
(LUR=2) 0.928 (6%) 0.8‘65 20%)
| 715
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WR=5) 0.858 (19%) EPREEPRISSRRSE, 0840 (8%)
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(a) [¥45/0/90]g Specimens, L/R =2 and 5 (c) [+45/90,]g Specimens, L/R =2

Fig. 4-15 Buckling End-Rotation Results

Although there is some discrepancy between the measured buckling end-rotations and
the predictions, overall trends are still apparent. As seen previously in Fig. 2-19 with the
idealized cylinders, Fig. 4-15 indicates for both the perfect and imperfect cylinders that the
ratio of the buckling end-rotations predicted by STAGS to the classical buckling end-rota-
tion, Qi ‘;/ Q _, varies as a function of the layup. The [+45/0;]g cylinder exhibits the larg-

cr’
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est value of Q’;‘;/ ch, followed by the [¥45/0/90]g cylinders, and the [+45/90,]
cylinders. The experimental data in Fig. 4-15 shows a similar trend for the cylinders with
L/R = 2. The largest value of Qry Q_ is observed for the [¥45/0,]s cylinder with
Q>?/ Q_, = 0916, followed by the [¥45/0/90]5 cylinders with Qr/ Q_, =0.831 and
0.877, and the [¥45/90,]g cylinders with Qif”/ch =0.721 and 0.775.

Comparing the measured buckling values in Table 4-2 and the buckling predictions for
the cylinders with imperfect geometries in Table 4-4 further highlights the relative differ-
ences between the quasi-isotropic and orthotropic cylinders. The average measured buck-
ling moment values reported in Table 4-2 for the orthotropic [¥45/90,]s and [¥45/0,]¢
cylinders are approximately 12% and 22%, respectively, lower the average buckling
moment for the quasi-isotropic [¥45/0/90|g cylinders with L/R = 2. The buckling
moment for the quasi-isotropic [¥45/0/90]s cylinder with L/R = 5 is 12% lower than the
average buckling moment for the [¥45/0/90]g cylinders with L/R = 2. The predicted
buckling moment values in Table 4-4 compare similarly, with the orthotropic [¥45/90,]¢
and [¥45/0,]g cylinders exhibiting buckling moments approximately 7% and 20%, respec-
tively, lower than those predicted for the quasi-isotropic [+45/0/90]¢ cylinders with
L/R = 2. The predicted buckling moment for the quasi-isotropic [¥45/0/90]g cylinder
with L/R = 5 is 7% lower than the predicted buckling moment for the [¥45/0/90]g cylin-
ders with L/R = 2. The average measured buckling strain and end-rotation values
reported in Table 4-2 for the orthotropic [+45/07]g cylinder are approximately 50% of the
buckling strain and end-rotation values for the [¥45/0/90]g cylinders with L/R = 2. The
measured buckling strain and end-rotation values for the orthotropic [+45/90,]g are
approximately 200% of the corresponding values for the [+45/0/90]g cylinders with
L/R = 2. The strain and end-rotation values for the [¥45/0/90]g cylinder with L/R = 5
are 85% and 210%, respectively, of the buckling strain and end-rotation values for the cyl-
inder with L/R = 2. The predicted buckling strain and end-rotation values reported in

Table 4-4 compare similarly.

The buckling shapes predicted for the imperfect cylinders are shown in the form of
three-dimensional views and two-dimensional radial displacement contour plots in Figs.
4-16 through 4-21. The buckling shapes correspondin g to the perfect cylinders are similar
to those presented for the idealized cylinders in Figs. 2-20 and 2-21.

Figs. 4-16 through 4-21 demonstrate that inclusion of the measured shape imperfections
can alter the predicted buckling shapes relative to the perfect specimens. The buckling
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shapes of the imperfect [¥45/0/90]g cylinders, shown in Figs. 4-16 through 4-18, no longer
exhibit the short wavelength modes shown in Figs. 2-20 (a) and 2-21 (a). Instead, buckling
on the compression side is confined to a region near the center of the cylinder. The buck-
ling shapes of the [¥45/0;]g and [¥45/90;]g cylinders, shown in Figs. 4-19 through 4-21,
are relatively unaffected in comparison to the modes illustrated in Figs. 2-20 (b) and (c).
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Fig. 4-16 Buckling Shape, CYL-1A, [+45/0/90]g, L/R = 2
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Fig. 4-17 Buckling Shape, CYL-1B, [+45/0/90]g, L/R = 2

4.4 Postbuckling Responses

As with the postbuckling analyses of the idealized cylinders discussed in section 2.3.1,
the postbuckling analyses of the test specimens were marked by numerical difficulties. The

extent of success of the postbuckling analyses was ascertained from the computed moment
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vs. end-rotation relations. Analyses for which several scallop-shaped branches of the post-
buckling moment vs. end-rotation relation could be computed, similar to relation depicted
in Fig. 2-22 (a), were considered highly successful. Cases for which only the first scallop-
shaped branch of the postbuckling moment vs. end-rotation relation could be computed
were considered moderately successful, and the remaining cases, in which only the initial
postbuckling solution was computed, as shown in Fig. 2-22 (b), were considered some-

what successful.

Various types of numerical difficulties were encountered in the postbuckling analyses of
the test specimens. Typically, difficulties occurred in the vicinity of extrema on the scal-

g OO S

V’SIE() I;S -90 -45 [ 45 9 135 180
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(a) Deformed shape (b) Radial displacement contour

Fig. 4-18 Buckling Shape, CYL-2, [+45/0/90]g, L/R = 5
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Fig. 4-19 Buckling Shape, CYL-3A, [¥45/0,]g, L/R = 2
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Fig. 4-20 Buckling Shape, CYL-4A, [+45/90,]g, L/R =2
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Fig. 4-21 Buckling Shape, CYL-4B, [¥45/90,]5, L/R = 2

lop-shaped postbuckling path. Attempts to overcome these extrema required a number of
small arc-length increments. In many instances, the analysis failed to converge on a solu-
tion on the desired path, converging instead on a previously obtained solution, or on an
undesirable adjacent path. The analysis was restarted with a smaller step size in an effort to
proceed along the desired equilibrium path. The analysis was halted if a number of

attempts failed to make any progress.

The predicted moment vs. end-rotation relations of the test specimens are summarized in
Fig. 4-22 (a) through (f). The moment and end-rotation values in these figures are normal-
ized with respect to the appropriate classical buckling moment and end-rotation values
reported in Table 4-1. The extreme values of each stable and unstable segment of the
moment vs. end-rotation relations are labeled as points A through /. The values of the end-
rotation and moment corresponding to the extrema are listed in each figure. The various

94



Results

degrees of success of the postbuckling analyses are evident in this figure. Rating the suc-
cess of the individual postbuckling analyses according to the criteria outlined above sug-
gests that the analyses of the [¥45/0,]q specimen CYL-3A and the [¥45/90,]g specimen
CYL-4B were extremely successful. The analysis of the [+45/0/90]g specimen CYL-1B
was moderately successful and the analyses of all other specimens were considered some-

what successful.

The predicted moment vs. end-rotation relations are compared in Fig. 4-23 for three rep-
resentative specimens with L/R =2 (CYL-1B, CYL-3A, and CYL-4B) and the one spec-
imen with L/R = 5 (CYL-2). The moment and end-rotation values in this figure are
normalized with respect to the classical buckling moment and end-rotation of the quasi-
isotropic specimen CYL-1A (see Table 4-1). The normalization factors are denoted as
Mgfm and QZ:“”", respectively. As with the measured moment vs. end-rotation relations
shown in Fig. 4-1, the predicted prebuckling relations are linear up to the bifurcation point.
The bifurcation points are labeled as points A; through D;. The successful postbuckling
analyses indicate numerous scallop-shaped branches beyond the bifurcation point. Each
scalloped-shaped branch was previously shown to correspond to a unique postbuckling

configuration.

The postbuckling analyses, although not always entirely successful, provide valuable
insight into the postbuckling behavior. As mentioned previously, the bifurcation point
occurs at a sharp maximum of the moment vs. end-rotation relation as shown in Fig. 4-23.
Each specimen in the figure exhibits an initial postbuckling slope with a high negative
value that is nearly coincident with the prebuckling slope, indicating that the buckling of
these cylinders occurs suddenly.

Fig. 4-23 indicates that the difference between the moment value at the bifurcation
points, A; through D;, and the corresponding moment value at the first minima on the
postbuckling path, denoted by points A, through D, is laminate, cylinder length, and
imperfection dependent. The magnitude of this difference is taken as an indicator of the
intensity of the buckling process. For the specimens with L/R = 2, the relative differences
are 43%, 21%, and 53% for the [¥45/0/90] s> [¥45/0,]s, and [¥45/90,]g specimens, respec-
tively. The difference for the [+45/0/90]s specimen with L/R =5 is 54%. .

The minima observed in Fig. 4-23, points A, through D5, provide a lower bound esti-
mate for the buckling moment of a cylinder with a particular shape imperfection. Fig. 4-23
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(a) indicates that the [+45/0/90]g specimen has the greatest bifurcation buckling moment
(M5/M1%" = 0.932) of the three cylinders with L/R = 2, followed by the [¥45/90,]
specimen (M’S/M7%*" = 0.848) and the [¥45/0,]g specimen (M'* /M7 = 0.749). Fig.
4-23 (b) indicates that the buckling moment for the [+45/0/90]g specimen with L/R =5 is
approximately 10% lower than the corresponding cylinder with L/R = 2. Assuming that
points A through D define a lower bound for the buckling moments for these cylinders, it
is seen that the [¥45/0;]g cylinder has the greatest buckling moment capacity
(MS/ M3 = 0.592), followed by the {745/0/90]g cylinder (MI2/M34%5" = 0.535) and
the [¥45/90,)g cylinder (M/S/M“*" = 0.398). The [¥45/0/90]g specimen with L/R = 5
exhibits a buckling capacity 27% lower than the corresponding quasi-isotropic cylinder
with L/R = 2. Tt is clear from this figure that the lower bound estimate for the buckling
moment depends greatly on the cylinder layup and length. It is not clear, however, how
this lower bound estimate is affected by geometric shape imperfections. Comparing the
lower bound estimate for the buckling moment to the predicted buckling moment for cyl-
inders with perfect geometries and L/R = 2 (see Table 4-3) indicates that the predicted
buckling moments for the perfect cylinders are reduced by approximately 45%, 50%, and

M/MZ;‘“S‘ .......... :;‘;lael—)]c M/MZ:‘G ! M( W>M
1.0 4 1.07 . \
N C,;
B, B
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Fig. 4-23 Normalized Predicted Moment vs. End-Rotation Comparison
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60% for the [¥45/05]g, [+45/0/90]s, and [¥45/90,]g cylinders, respectively. For the perfect
[¥45/0/90]g cylinder with L/R = 5, the buckling moment is reduced by approximately
60%.

Correlation between the observed and predicted postbuckling responses is discussed in
the remainder of this chapter. It should be noted that the conditions under which the transi-
tion from buckling to postbuckling occurred in the experiments may have differed appre-
ciably from those assumed in the analytical postbuckling calculations. In the analysis, it
was assumed that the cylinder ends rotated about fixed pivot pins (see Fig. 3-3 (b)). In the
experiment, axial motion of the pivot pins may have occurred as a result of buckling of the
specimen, effectively reducing the actual postbuckling stiffness of the specimens. Also,
the analysis was conducted quasi-statically using arc-length control, resulting in gradual
changes in the postbuckled shapes of the cylinder as the various branches of the postbuck-
ling path were traversed. In the experiment, buckling occurred dynamically so that a num-
ber of branches of the theoretical postbuckling solution may not have been visible to the
naked eye. As with other dynamic processes, the outcome depends on the initial conditions
and dynamic characteristics of the system. Without prior knowledge of the initial condi-
tions and characteristics, it is difficult to model the experiments and predict the resulting
postbuckling equilibrium paths. Therefore, the reader should not be surprised to find that
direct correlation is not possible in most cases and that comparisons are based on qualita-
tive observations. To illustrate the differences between the measured and predicted post-
buckling responses, the moment vs. end-rotation relations are shown in Fig. 4-24 for the
[¥45/90;]g cylinder CYL-4B. This figure shows that the measured postbuckling path is
quite different than the predicted path. The moment values are significantly lower than the
predicted values. Also, the measured postbuckling stiffness changes as the end-rotation
increases, indicating possible material damage in the specimen. Material damage was not

taken into account in the analysis.

Finally, as was observed in Fig. 4-22, it was not possible to obtain numerical predictions
far into the postbuckling range for all specimens. For specimen CYL-3A and CYL-4B
(Figs. 4-22 (d) and (f)) it was possible. For the other cylinders, it was not possible. Thus,
for some cylinders, even though there were measurements far into the postbuckling range,
there are no predictions there. Hence, there is a lack of uniformity among the cylinders in

comparing measured and predicted postbuckling responses.
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Fig. 4-24 Postbuckling Moment vs. End-Rotation Comparison

4.4.1 Deflection Patterns

Photographs of two representative postbuckling deflection patterns are illustrated in
Figs. 4-25 and in 4-26. The deflection patterns shown in these figures correspond to the
[+45/90,]g specimen CYL-4B (L/R = 2) and the [+45/0/90]g specimen CYL-2 (L/R =
5). The values of applied moment and end-rotation corresponding to the photographs are
indicated in Fig. 4-1 by the points labeled A and B. The most prominent feature in these
figures are the large diamond-shaped buckles on the compression side of the specimens.
The inward buckles were outlined on the specimens for visualization purposes. These fig-
ures are typical examples of the symmetric and asymmetric patterns, relative to 0 = (°,

observed during testing of the specimens.

The predicted and the observed postbuckling deflection patterns are compared in Figs. 4-
27 and 4-28 for the [+45/0,]5 specimen CYL-3A and the [+45/90,]g specimen CYL-4B,
respectively. As was mentioned previously, extensive postbucklin g predictions were possi-
ble for these two specimens. Predicted radial displacement contours on the compression
side of the cylinders are compared to outlines of the observed inward buckles in these fig-
ures. Part (a) of each figure shows a radial displacement contour of the predicted deflection
patterns. The contours were scaled to show only the inward radial deflections and were
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| HE.891.0YL 03B

Fig. 4-25 Representative Postbuckling Deflection Pattern, L/R = 2

computed from solutions near the points labeled H in Fig. 4-22 (d), and / in Fig. 4-22 (f),
respectively. Traced outlines of the inward buckles of the initial deflection patterns are
illustrated in part (b) in Figs. 4-27 and 4-28. Outlines of observed material damage at final
failure are also indicated in these figures. The locations of selected strain gages are shown
in Fig. 4-27 (b) for the purpose of later discussion. The predicted and observed deflection
patterns for the [+45/0,]g specimen indicate a symmetric pattern about 6 = 0°. Correlation
between the deflection patterns is considered to be good for this specimen. The secondary
postbuckling shape shown in Fig. 4-27 (b) was not evident in the analysis, suggesting that
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Fig. 4-26 Representative Postbuckling Deflection Pattern, L/R = 5

it may have been initiated by a local disturbance such as a material failure. The predicted
deflection pattern for the [¥45/90,] specimen indicates a symmetric pattern about 6 = 0°,
similar to the predicted deflection pattern for the [745/0,] s specimen. The observed deflec-
tion pattern for this specimen, however, differs from the prediction, showing an asymmet-
ric pattern relative to 6 = 0°. Correlation between the predicted and observed deflection
patterns is considered to be relatively poor for this specimen. Qualitatively, Figs. 4-27 and
4-28 indicate that there are distinct similarities between the general characteristics of the
buckles seen in the predicted and observed deflection patterns.
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Fig. 4-27 Postbuckling Deflection Patterns, CYL-3A, [745/0,]g, L/R = 2
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Fig. 4-28 Postbuckling Deflection Patterns, CYL-4B, [745/90,]g, L/R = 2
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Traces of the observed postbuckling deflection patterns for all other specimens are pre-
sented in Figs. 4-29 through 4-32. Although not traced during the test, examination of the
video recording indicated that the postbuckling pattern of the [¥45/0/90]g specimen CYL-
1A was very similar to the symmetric postbuckling pattern of the corresponding idealized
cylinder shown in Fig. 2-23. A schematic of the observed deflection pattern, as determined

indirectly from the video recording, is illustrated in Fig. 4-29. In contrast to specimen

— buckles X =+6.0 in.

it | O <>
ocaton
< > <\/, e

x=-6.01n.

90° 60° 30° 6=0° 330° 300° 270°
Fig. 4-29 Schematic Postbuckling Deflection Pattern, CYL-1A, [+45/0/90]g, L/R = 2

x=+6.01n.

— buckles

----- post failure
pattern

terial |

W damage

} . |
90° 60° 30° 8=0° 33()° 300° 270°x =-6.0 in.
Fig. 4-30 Trace of Postbuckling Deflection Pattern, CYL-1B, [+45/0/90]g, L/R = 2
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CYL-1A, specimen CYL-1B exhibited the asymmetric postbuckling pattern seen in Fig. 4-
30. The deflection pattern for the [¥45/0/90|g specimen CYL-2 (L/R = 5) shown in Fig.
4-31 is relatively symmetric about 8 = 0° and similar to the pattern of the [+45/0,] speci-
men CYL-3A. A trace of the buckles exhibited by the [¥45/90,]¢ specimen CYL-4A is
depicted in Fig. 4-32. The asymmetric deflection pattern for CYL-4A is similar to the
deflection patterns for specimens CYL-1B and CYL-4B.

Three-dimensional views of the deformed shapes and two-dimensional contour plots of
the predicted postbuckling deflection patterns are illustrated in Figs. 4-33 through 4-36 for
the three representative specimens with L/R = 2 (CYL-1B, CYL-3A, CYL-4B) and the

x=+15.01n.
,  — buckles
; terial
o T
x=0.0in.
| |
x=-15.01n.

90° 60° 30° 0=0° 330° 300° 270°
Fig. 4-31 Trace of Postbuckling Deflection Pattern, CYL-2, [+45/0/90]g, L/R = 5
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specimen with L/R = 5 (CYL-2). The deflection patterns for the cylinders with L/R =2
correspond to the maxima of the postbuckling moment vs. end-rotation relations shown in
Fig. 4-22 (b), (d), and (f). The deflection patterns for the cylinder with L/R =5 corre-
spond to the minimum point of the postbuckling moment vs. end-rotation relations shown
in Fig. 4-22 (c). Although these patterns did not necessarily correlate with the observa-
tions, they are presented to show how the deflection patterns progressively develop as the
scallop-shaped segments of the postbuckling path are traversed. The development of the
postbuckling deflection patterns is strikingly similar for the [+45/0,]g and the [¥45/90;]s
cylinders with L/R = 2. A comparison to the quasi-isotropic cylinders is not possible due

to the limited success of those particular analyses.

4.4.2 Postbuckling Strain Responses

Measured postbuckling strain profiles are presented in Figs. 4-37 through 4-42. The pre-
buckling strains are shown in these figures for comparison. The prebuckling strain profiles
correspond to the value of end-rotation at the instant before buckling and the postbuckling
strain profiles correspond to the value of end-rotation an instant just after buckling. The
axial strain profiles are shown at 6 = 0° and are compared at z/H = +0.5 and 0.0. The cir-
cumferential strain profiles are shown at x/L = 0 and are compared at z/H = +0.5, 0.0,
and —0.5.
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Recall, good correlation was observed between the predicted and observed postbuckling
deflection patterns for the [¥45/0;]g specimen CYL-3A. The predicted and measured axial
strains are shown for this specimen in Fig. 4-37. The strain gage locations from which the
data were obtained are superimposed on the deflection pattern of Fig. 4-27 (b). The pre-
dicted strain profiles in Fig. 4-37 (a) and (b) were obtained from the last stable prebuckling
solution and from a postbuckling solution corresponding to point H on the last scallop-
shaped branch of the moment vs. end-rotation relation shown in Fig. 4-22 (d).
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Fig. 4-33 Predicted Postbuckling Deflection Patterns, CYL-1B, [(+45/0/90]g, L/R = 2
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Fig. 4-34 Predicted Postbuckling Deflection Patterns, CYL-2, [+45/0/90]g, L/R = 5§
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Fig. 4-38 Measured Postbuckling Strain Profiles, CYL-1A, [+45/0/90]g, L/R = 2
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Fig. 4-39 Measured Postbuckling Strain Profiles, CYL-1B, [745/0/90]g, L/R = 2
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Fig. 4-37 (a) exhibits the characteristic prebuckling bending boundary layer along the
entire length of the cylinder. The postbuckling strains show a combination of the short pre-
buckling boundary layer wavelength near the ends of the cylinder and a longer wavelength
near the mid-length of the cylinder. These wavelengths correspond to the small inward
buckles and the outward bulge shown in the figure. Inward buckles are identified by the
comparatively large values of compressive strains on the outer cylinder surface, z/H =
+0.5. Similarly, outward bulges are identified by large values of tensile strains. Although
the number of strain gage locations are somewhat limited (see Fig. 4-27 (b)), it is clear
from Fig. 4-37 (c) that the measured axial strain profile indicates the same features as the
predicted strain profile. Fig. 4-37 further demonstrates that the maximum inplane post-
buckling strain values occur near the center of the buckles and are up to three times greater
than the prebuckling strain values for this specimen.
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Fig. 4-40 Measured Postbuckling Strain Profiles, CYL-2, [+45/0/90]g, L/R = §

The circumferential strain profiles, Fig. 4-37 (b) and (d), exhibit a smoothly varying
sinusoidal prebuckling strain distribution, as expected. The perturbations in the postbuck-
ling strain distribution indicate the location of the large buckles on the compression side of
the cylinder. The sinusoidal variation of the strains on the tension side of the cylinder,
observed in prebuckling, is not appreciably affected by the presence of the buckles.
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Although the details of the postbuckling strain profiles for the other specimens vary con-
siderably, similar features are evident. The measured strains confirm that the postbuckling
deflection patterns were confined to the compression side of the cylinders in each case.
The circumferential distribution of the axial strains on the tension side of the cylinders
remained relatively undisturbed after buckling. Locations of the inward buckles, observed
in the postbuckling deflection patterns shown in Figs. 4-27 through Fig. 4-32, can be iden-
tified by the large compressive strain values at the outer cylinder surface, z/H = +0.5. The
magnitude of the postbuckling surface strains reached a value of up to three times that of

the corresponding maximum prebuckling strain.
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Fig. 4-41 Measured Postbuckling Strain Profiles, CYL-4A, [745/90,]5, L/R = 2

4.4.3 Postbuckling Material Failure

Observations indicated that material failure was initiated at, or near, the nodal lines of
the postbuckling deflection patterns. The locations of visible material damage are indi-
cated on the traces of the postbuckling deflection patterns shown in Figs. 4-27 through Fig.
4-32. Visible material damage at the nodal lines of the postbuckled shapes, rather than at
the center of the buckles where the surface strains were maximum, suggests that ultimate

failure was induced by an interlaminar shear failure mode. This observation is consistent
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with previous investigations of the postbuckling failure characteristics of flat graphite-

epoxy plates [92, 93].

Visible material damage was confined to the nodal regions in the [+45/0/90]g and the
[¥45/0,]g specimens. Final failure of the [¥45/0,]g specimen was initiated at the nodal
lines of the secondary buckles. Material damage in the [¥45/90;]g specimens propagated
approximately 270° around the circumference of the specimens, near the mid-length.
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Fig. 4-42 Measured Postbuckling Strain Profiles, CYL-4B, [¥45/90,]g, L/R =2
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Chapter 4 demonstrated that in most cases the nonlinear character of the measured pre-
buckling strain responses in the boundary layer region could be predicted accurately,
assuming perfectly clamped boundary conditions. In the case of the [+45/0;]s specimen,
significant discrepancies were observed between the measured and predicted strain ampli-
tudes in the boundary layer region, particularly at higher values of end-rotation. Sections
2.1.3 and 2.1.4 showed that the prebuckling strain responses were sensitive to non-ideal
boundary conditions and geometric imperfections. It will be shown that non-ideal bound-
ary conditions may have influenced the prebuckling responses of the [+45/0,] specimen.

The classical buckling parameters were previously seen to provide a reasonable first-
order approximation to the predicted buckling values. To further explore potential sources
of discrepancies between predicted and measured responses, the sensitivity of the classical
buckling parameters to the thickness and stiffness properties of the three laminates is

investigated.

Another potential source of discrepancies were the ply seams that were introduced dur-
ing the manufacturing process. To assess the effect of this type of manufacturing defect on
the cylinder responses, a preliminary finite element analysis of two typical observed seam

types was conducted.

3.1 Non-Ideal Boundary Conditions

Elastic Supports

It was shown in section 2.1.3 that the strain and displacement responses in the boundary
layer region were sensitive to the flexibility of the support conditions. Relaxing the radial
and the rotational stiffnesses can substantially alter the peak amplitudes and the overall
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character of the responses. Given the low-stiffness potting compound used in the experi-
ments, it is apparent that some relaxation of the clamped radial and rotational restraints

was allowed to take place.

A wide range of elastic stiffness parameters was studied with the nonlinear Donnell anal-
ysis in an effort to explain the discrepancies between the measured and predicted
responses for the [¥45/0,]g specimen CYL-3A. The axial surface strain at the end of the
compression side of the cylinder was taken as a measure of the sensitivity to the boundary
conditions. The strain responses were computed at the end-rotation value
Q/QZP = 0.90. The results of this parameter study are summarized in Fig. 5-1. The fig-
ure shows the effect of an ‘elastic’ radial support (KQ = 1x10° psi) and a relatively
‘rigid’ radial support (K, = 1x10° psi). The flat segments on the curves define the range
of values of K, that correspond to either the ‘simple’ support or the ‘clamped’ support
conditions. The values of K, that define the range of ‘elastic’ support conditions falls in
between the indicated simple support and the clamped support regions. The difference
between the two curves indicates that the radial stiffness of the supports should be consid-
ered in addition to the usual simple support and clamped support conditions. Relative to
the strain response with the ‘rigid” radial support, ‘elastic’ radial supports can cause strains
at the end of the cylinder to be alleviated by up to 60% for the ‘simple’ support condition
and up to 20% for the clamped ‘support’ condition.
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cr
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Fig. 5-1 Effect of Elastic Support Parameters

116



Discrepancies

The axial surface strain responses corresponding to K y = 11b, 100 Ibs, and 500 lbs are
compared to the measured values in Fig. 5-2 (a) and (b) for the elastic and rigid radial sup-
ports, respectively. The strains are compared for 8 =0° and z/H = +0.5 for the end-rota-
tion Q/QZ¥ = 0.90. Although optimum correlation is not observed this figure, it is
demonstrated that the predicted peak strain responses can reach the values of the measured

strains, thus indicating the correct trends.
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Fig. 5-2 Effect of Elastic Support Conditions

As a matter of interest, it is mentioned here that other investigators have studied the
effect of the flexibility of the support conditions on the buckling responses of cylindrical
shells. For example, Abramovich et al. [94] used a vibration-correlation technique to
define the experimental boundary conditions for the axial compression of metallic
stringer-stiffened shells.

Radial End-Deformations

Section 2.1.3 demonstrated that radial end-deformations of 10% to 20% of the cylinder
wall thickness substantially affected the peak strain amplitudes in the boundary layer
region. During the specimen preparation process it was found in some cases that radial
end-deformations resulted from the process of potting the cylinder ends into the loading
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rings (see section “‘Radial Deformations due to Potting Procedure” in Appendix D). The
maximum value of radial pinching was 23% of the wall thickness and the maximum value
of expansion was 12% of the wall thickness. Although the radial end-deformation data is
somewhat limited, it is apparent that radial end-deformations may have been a factor in

influencing the measured responses.

Axial Pre-Straining

Compressive axial pre-straining of the test specimens is another possible source of dis-
crepancies in the strain data. Pre-straining of test specimens is difficult to quantify and was
assumed to be negligible in the analyses. In the experiments, minor pre-straining was
induced while bolting the specimens into the test fixture. The pre-straining was induced by
forcing the end surface of the test specimen together with the back plate of the test fixture.
Furthermore, deviations from flatness in the ends of the specimen and loading rings and

the back plate of the fixture tended to induce local deformations in the specimen.

To determine the severity of the pre-straining effect, the [+45/0/90]g specimen with L/R
= 5 was instrumented before being bolted into the test fixture. Also, the face of one of the
fixture back plates was measured for flatness. The back plate was found to be flat to within
0.001 to 0.002 inches. Surface shape profiles of the potted ends of the cylinders were mea-
sured along a number radii. A typical end-shape profile is shown in Fig. 5-3 (a). The devi-
ation from flatness of the potted cylinder end is plotted as a function of radial position in
this figure. The local deviations due to the inner loading ring, low melting-point alloy,
tabbed cylinder, and outer loading ring are clearly visible in the end-shape profile. Typi-
cally, the difference between the maximum and minimum values was approximately 0.002
to 0.004 inches.

The axial pre-strains were measured both near the end and at the center of specimen after
increasing the torque in the mounting bolts. The magnitude of the pre-strains at the mid-
length of the cylinder were found to be small in comparison to the strains near the ends,
suggesting that the pre-straining was confined to a region near the ends of the specimen.
The average end-shape of the midsurface of the specimens, A;,,, and the axial midsurface
pre-strains near the end of the cylinder, ef, are plotted as a function of the circumferential
location in Fig. 5-3 (b). The measurement locations are indicated in Fig. 5-3 (a). It is seen
from this figure that the strain profile correlates well with the average end-shape, A;,,.. The

magnitude of the maximum compressive pre-straining near the end of the cylinder was
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Fig. 5-3 Axial Pre-Loading due to Specimen End-Shape

approximately 75 pe. This maximum pre-strain value represents approximately 1% of the
measured buckling strain for the [¥45/90,]g specimens, 2% for the [¥45/0/90] S specimens,
and 5% for the [+45/0,]g specimen. Correlation may be slightly improved if pre-straining
is accounted for in the analyses, particularly when specimen buckling strains are relatively

low, as in the case of the [¥45/0;] specimen.

Combined Effect of Non-Ideal Boundary Conditions and Initial Imperfections

The investigation of non-ideal boundary conditions demonstrated that the effects of the
radial and rotational stiffnesses of the elastic supports, radial end-deformations, and axial
pre-straining can be important considerations. It was shown earlier that the strain
responses were exacerbated by including the effects of an initial axisymmetric imperfec-

tion.
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The individual non-ideal parameters were combined to determine whether the measured
strain responses for the [¥45/0,]g specimen may have been affected by conditions other
than the measured shape imperfection. Numerous combinations of the elastic support stiff-
ness parameters, K 0 and K, radial end-deformations, wp, and a compressive axial pre-
strain, ef, were investigated. The measured imperfection shape was simulated by includ-
ing a mild axisymmetric imperfection of the form given by Eq. (2.35). The non-ideal
parameters were varied using the insight gained from the individual parameter studies dis-
cussed previously. The result of this exercise is shown in Fig. 5-4 for the end-rotation
value Q/Q% = 0.90. The predicted strains for the non-ideal cylinder are compared to
the strains predicted for the perfectly clamped cylinder and the measured strains. The
strain profiles in the figure are for = 0° and z/H = +0.5. It is seen that the correlation
between the axial strains on the compression side of the non-ideal cylinder and the mea-
sured values can be dramatically improved relative to the perfectly clamped cylinder.
Evaluating the buckling capacity using the nonlinear Donnell prebuckling analysis indi-
cates that the non-ideal conditions reduce the buckling capacity of the cylinder by approx-

imately 8% relative to the perfect cylinder.

Similar studies were conducted with the other test specimens. Correlation between the
measured and predicted strains showed some improvement for all specimens when consid-

ering non-ideal conditions. The non-ideal parameters are summarized in Table 5-1 for all

_ 11
00 W (x,8) = —0.00SHcos—g
CYL-3A, [¥45/0]s, 05k bt Non-ideal parameters:
Q/QE7 = 090, _ o 7~ Ko =3,000psi,
L/R = 2, _e_x_ . 0( > == ‘\Q I.' KM =700 lbs,
R/H = 1575, e, “o A\ wg/H =-0.15,
z/H = +0.5 — perfect ef =75 e
z 1.5 ---- non-ideal ' x
{6 =0 I o measured
2.0 Y DU U R SR |
00 01 02 03 04 05
x/L

Fig. 5-4 Correlation with Non-ideal Boundary Conditions and Initial Imperfections
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specimens. The range of values of K y and K o presented in this table are indicated in Fig.
5-1, which shows that the effective rotational and radial stiffnesses of the supports were
somewhat less than those of an ideally clamped support.

Table 5-1 Summary of Non-Ideal Parameters

Specimen Wall | , b .
. . < M K H a
Identification Construction KQ’ psi M> bs Wpa € ,Us & m
Code
CYL-1A 3,000 300 -0.15 0 -0.001 15
CYL-1B [+45/0/90] 3,000 300 -0.15 0 -0.001 15
CYL-2 3,000 300 -0.15 0 -0.010 | 37
CYL-3A [¥45/07]g 3,000 700 -0.15 75 -0.005 11
CYL-4A 8,000 500 -0.05 0 +0.010 | 17
[+45/90,]g

CYL-4B 8,000 800 -0.05 0 +0.010 | 17

a. Amplitude parameter for axisymmetric imperfection, & = w/H.

b. Half-wavelength parameter for axisymmetric imperfection, see Eq. (1.2).

5.2 Property Variations

In the analyses, it was assumed that the thickness and stiffness properties the laminates
were distributed uniformly throughout each specimen. In practice, some spatial variation
of the properties was evident as a result of the manufacturing processes involved in fabri-
cating the specimens (see section “Graphite-Epoxy Cylinder Fabrication” in Appendix D).
Local variations in the specimen thickness and stiffness properties can perturb the pre-
buckling strain responses and reduce the buckling capacity of the specimens in some
instances. To investigate this potential source of discrepancies between the measured and
predicted buckling values, a study was conducted to determine the sensitivity of the buck-
ling parameters with regard to various lamina properties.

Variations in Ply Thickness and Material Properties

The sensitivity to variations in the ply thickness, 4, and the material properties, E,, E,,
Gy, and v, was evaluated using the classical buckling estimates, Eqs. (2.40) through
(2.42). The individual properties were varied about the average property values by +20%
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and the resulting buckling parameters were computed for the [¥45/0/90]s, [¥45/0;]5, and
[¥45/90,]¢ laminates. The average properties values were h =0.0046 in., E, =23.38 Msij,
E, =175Msi, G, =1.03 Msi, and v,, = 0.285.

The percent variation of the buckling parameters €2_, € , and M, are plotted in Figs.
5-5 through 5-7 as a function of the percent variation of the ply thickness, the stiffness
properties, and Poisson’s ratio. Part (a) of each figure corresponds to the variation of ch
or €_,, and part (b) corresponds to the variation of M, . In studying these figures, it is evi-
dent from Fig. 5-5 (a) that the values of Q _and €_ are most sensitive to /. Figs. 5-5 (b)
and 5-6 (b) indicate that the values of M, are most sensitive to 4 and E,. Some sensitiv-

ity to laminate orthotropy is observed in Figs. 5-6 and 5-7.

50 : 50 — :
A4 ' b
25 — 25— d
Variation ///i/ Variation [ < i
in Q. or o : in M., o}—
R /( [1745 090l —  * — |
25 [¥45/07)g — -25 : :
[F45/90,)s ||
o |
-50 . : -50
-20 -10 0 10 20 220 10 0 10 20
Variation in A, % Variation in A, %
(a) Q. €p vs. h (by M., vs. h

Fig. 5-5 Sensitivity to Ply Thickness

As a matter of interest, the buckling parameters Q _ , €_, and M were computed from

r’ “cr’

the classical buckling estimates, Eqs. (2.40) through (2.42), assuming nominal cylinder
dimensions and material properties, i.e. R = 6 inches and the nominal material properties
as given in Table E-2. The resulting values were then compared to the classical buckling
estimates computed with the properties corresponding to the test specimens (see Table 4-
1). The difference between the buckling parameters assuming nominal properties and the
buckling parameters assuming the specimen properties is found to be similar to the 16% to
24% change in E | due to the change in fiber volume fraction, Vi, found to occur in the test
specimens (see Table E-4).
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Post-failure thickness surveys of two circumferential locations on the undamaged tensile
sides of the specimens with L/R = 2 were conducted. The results of the thickness survey
are summarized in Table 5-2. The mean wall thickness, and the minimum and maximum

thickness values are reported in the table. The minimum and maximum values are given as

Table 5-2 Thickness Survey?

Specimen Wall Mean® Minimum | Maximum
Identification Construction Thiqkncss, Thickness, | Thickness,
Code 1n. % %
CYL-1A 0.0368 -4.4 +10.1
CYL-1B [¥45/0/90] 0.0384 -5.2 +14.1
CYL-3A [+45/0;]g 0.0389 -4.9 +7.2
CYL-4A 0.0389 -64 +6.9

[+45/90,]g
CYL-4B 0.0390 -6.4 +8.2

a. Axial scans were conducicd at 6 =

b. Computed from 188 measurements points.
¢. Thickness data not available.

157.5° and 202.5°.

the percent difference relative to the mean thickness. The minimum thickness values are
4% to 6% less than the mean thickness and the maximum thickness values are 7% to 14%
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greater than the mean thickness. Comparing the minimum thickness values in Table 5-2 to
those in Fig. 5-5 suggests that locations of minimum thickness on the compression side of

the specimens may have led to slight reductions in the buckling values.

5.3 Ply Seams

Thickness and stiffness discontinuities were sometimes the result of the ply seams that
were introduced during the fabrication process (see section “Graphite-Epoxy Cylinder
Fabrication” in Appendix D). To investigate the sensitivity to this type of manufacturing
defect, two small strips were cut from a [¥45/0;]g cylinder. The edges of the strips were
polished and photographed under a microscope. Photomicrographs of internal overlap and
gap seams are shown in Figs. 5-8 (a) and (b), respectively. The two outer dark layers on
the top and the bottom of the laminate indicate the locations of the 45° plies and the four
light layers indicate the 0° plies. The overlap seam occurs in +45° ply that is adjacent to a
0° ply. The gap seam is the result of a gap in a +45° ply adjacent to a 0° ply. The character-
istic dimensions of the seams illustrated in Fig. 5-8 are on the order of the laminate wall

thickness.

A preliminary analysis was conducted to assess the effect of the seams. Both overlap and
gap seams were modeled as stiffness discontinuities using the STAGS finite element pro-
gram. Overlap and gap seams were modeled with the stiffness properties of an appropriate
9-ply laminate and 7-ply laminate, respectively. A number of axial, helical, and circumfer-
ential seams were analyzed. The axial seams were located at 8 = 0° and the helical and cir-
cumferential seams were oriented to perturb the boundary layer regions on the

compression side near the ends of the cylinders.

The effect of the seams was assessed by conducting a nonlinear prebuckling analysis and
then a linear bifurcation analysis. Both perfect and imperfect cylinder geometries were
considered. The net effect of the seams was to locally perturb the prebuckling displace-
ments. The seams had only a minor effect on the buckling end-rotation of the cylinders,
typically on the order of 1%. It was therefore concluded that these particular types of gap
and overlap seams had a negligible effect on the buckling response of the specimens.
However, the effect of ply seams may be significant for other loading conditions, such as

internal pressure.
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6. Conclusions and Recommendations

The goal of the present work was to accurately predict the behavior of thin-walled com-
posite cylinders subjected to bending. Typical applications include transport aircraft fuse-
lage structures, launch vehicles, transportation and storage containers, etc. To achieve the
stated goal, an in-depth numerical and experimental investigation of the bending behavior
of six eight-ply graphite-epoxy cylinders was conducted. The cylinders had a nominal
radius of six inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of
approximately 160. A [¥45/0/90] quasi-isotropic layup and two orthotropic layups, [¥45/
0,]s and [¥45/90,], were studied.

A geometrically nonlinear special-purpose analysis, based on Donnell’s nonlinear shell
equations, was developed to study the prebuckling responses due to bending, and gain
insight into the effects of non-ideal boundary conditions and initial geometric imperfec-
tions. A geometrically nonlinear finite element analysis was utilized to compare with the
prebuckling solutions of the special-purpose analysis and to study the buckling and post-
buckling responses of both geometrically perfect and imperfect cylinders. An analytical
approximation of the measured shape imperfections was employed to represent the imper-
fect cylinder geometries. Extensive experimental data were acquired electronically from
quasi-static tests of six specimens using a test fixture specifically designed for the present
investigation. The experimental data were compared to predictions for both perfect and
imperfect cylinder geometries. Prebuckling results were presented in the form of displace-
ment and strain profiles. Buckling end-rotations, moments, and strains were reported, and
predicted mode shapes were presented. Observed and predicted moment vs. end-rotation
relations, deflection patterns, and strain profiles were illustrated for the postbuckling

responses.
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6.1 Conclusions

The conclusions drawn from this investigation are presented according to the three
major response categories of prebuckling, buckling, and postbuckling. Comments are also

made regarding observed material failure.

6.1.1 Prebuckling

The analyses and measured data clearly indicate that a geometrically nonlinear analysis
is required to accurately predict the bending boundary layer that develops from the ends of
the cylinder. The boundary layer is confined to a region near the end of the cylinder on the
tension side, but develops along the length of the cylinder on the compression side as the
end-rotation is increased. It is further concluded that the overall displacement and strain
responses and the character of the boundary layer regions are sensitive to the orthotropy of
the laminates, the radius and thickness of the cylinders, the value of applied end-rotation,
and the initial geometric imperfections. For example, regarding the sensitivity to orthot-
ropy, compared to a quasi-isotropic [¥45/0/90]g cylinder with a radius equal to 6 inches,
the attenuation length of the boundary effects is 23% longer for a [¥45/0,]5 cylinder, and
16% shorter for a [45/90,]g cylinder.

It is concluded from discrepancies observed between the measured and predicted strains
for some specimens that non-ideal boundary conditions can have a measurable effect on
the prebuckling responses in the boundary layer region. In particular, radial stiffness of the
supports should be considered, in addition to the rotational stiffness of the supports. In
comparison to ‘rigid’ radial supports, ‘elastic’ radial supports can alleviate strains at the
end of a cylinder by up to 60% for ‘simple’ support conditions and up to 20% for clamped
‘support’ conditions. Additionally, geometric imperfections with amplitudes of only 1% of
the cylinder wall thickness can exacerbate the peak amplitudes of the prebuckling
responses when the imperfection contains the axial half-wave length corresponding to the
characteristic half-wave length of the boundary layer responses. The peak amplitudes are
also exacerbated by radial deformations applied to the cylinder ends.

6.1.2 Buckling

With regard to buckling, it can be concluded from the classical buckling analysis, the
special use of the prebuckling analysis, and the finite element buckling predictions that the
orthotropy of the laminates greatly influences the buckling end-rotation and strain values,
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and to a lesser extent, the buckling moment values. Further, accurate buckling predictions
can be obtained from a bifurcation analysis conducted relative to a nonlinear prebuckling
state in consideration of analytical representations of measured initial geometric shape
imperfections. The measured buckling end-rotations are 6% to 20% less than the predicted
buckling values. For cylinders with L/R = 2, the average measured buckling moment
values for the orthotropic [¥45/90,]g and [¥45/0,]g cylinders are approximately 10% and
20%, respectively, less than those for the quasi-isotropic [¥45/0/90]g cylinders. The mea-
sured buckling moment for the quasi-isotropic [¥45/0/90]g cylinder with L/R = 5 is
approximately 10% less than the average buckling moment for the [+45/0/90]g cylinders
with L/R = 2. The predicted buckling moment values compare similarly. Regarding the
measured buckling strain and end-rotation values for cylinders with L/R = 2, the aver-
age values for the orthotropic [F45/0, | cylinder are approximately one half of the average
measured buckling values for the [¥45/0/90|g cylinders, and the average buckling values
for the orthotropic [¥45/90,]g cylinders are approximately twice the corresponding buck-
ling values. Finally, the measured buckling strain value for the [+45/0/90]¢ cylinder with
L/R = 5 is slightly less than the average buckling strain value for the [¥45/0/90]g cylin-
ders with L/R = 2. The corresponding buckling end-rotation is slightly greater than two
times the average end-rotation value for the [¥45/0/90]g cylinders with L/R = 2. The

predicted buckling strain and end-rotation values compare similarly.

With regard to anisotropy, it is concluded that skewing of the predicted buckling shapes
is induced by the presence of the bending stiffness terms, D, and D,,. The buckling
shapes corresponding to the [¥45/90,]g cylinders exhibit significant skewing compared to
the shapes for the [¥45/0/90]g and [¥45/0,7]g cylinders. Also, as was observed with the
[¥45/0,]s cylinder with L/R = 2, outward radial prebuckling deflections on the compres-
sion side of the cylinder, controlled to some extent by the orthotropy of the laminate, may
tend to improve the stability of the prebuckling behavior.

The buckling resistance of the cylinders is most sensitive to variations in the ply thick-
ness, &, somewhat sensitive to variations in the longitudinal Young’s modulus, E,, and
relatively insensitive to variations in E,, G,,, and V,,- Also, observed gap and overlap
ply seams appear to have negligible influence on the predicted buckling end-rotation of the

cylinders.
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6.1.3 Postbuckling

Finite element analyses of the specimens required considerable computational effort to
obtain the postbuckling responses and were typically marked by numerical difficulties.
Successful analyses provide valuable insight into the postbuckling behavior. The post-
buckling responses indicate an equilibrium path with numerous scallop-shaped branches
that are comprised of both stable and unstable segments. Each branch corresponds to a
unique postbuckling deflection pattern. The experimentally observed postbuckling deflec-
tion patterns and strain profiles show strikingly similar features to the predictions for all

three laminates.

The predicted postbuckling moment vs. end-rotation relations provide a lower bound
estimate for the buckling moment for cylinders with known shape imperfections. Lower
bound estimates are shown to depend on the cylinder layup and length. For the cylinders
with L/R = 2, the lower bound estimates for the buckling moments were approximately
45%, 50%, and 60% less than the predicted buckling moment values corresponding to the
geometrically perfect [¥45/0;]g, [¥45/0/90]s, and [¥45/90;]g cylinders, respectively. The
corresponding estimate was 60% less than the predicted buckling moment for the geomet-
rically perfect [+45/0/90]g cylinder with L/R = 5. Comparing the lower bound estimates
for the cylinders with L/R = 2 suggests that the [45/0;]g cylinder has the greatest abso-
lute lower bound moment capacity, followed by the [45/0/90]g and the [¥45/90,]g cylin-

ders.

6.1.4 Material Failure

Material failure is not an issue in the prebuckling of the thin-walled cylinders considered
in this investigation. The large deflections observed during the buckling process induced
only minor visible material damage in some cylinders. Further visible material damage is
initiated in the vicinity of the nodal lines of the postbuckling deflection patterns during
continued loading in the postbuckling range. Ultimate failure is initiated at these same
locations. From the observed failure locations, it is concluded that ultimate failure can be
attributed to an interlaminar shear failure mode. The extent of observed material damage
indicates that hoop-stiff cylinders are less effective in containing material damage than

quasi-isotropic and axially-stiff cylinders.
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6.2 Recommendations for Further Research

A number of issues regarding the theoretical and experimental aspects of the present

study are felt to be important but were not considered in this investigation. Some of these

arc:

1.

The special use of the Donnell theory prebuckling analysis indicated that non-ideal
boundary conditions can reduce the buckling resistance of the cylinders. Further inves-
tigations should be conducted to determine how non-ideal conditions can influence the

buckling values and modes.

. The classical buckling parameters were shown to be relatively sensitive to variations in

the cylinder wall thickness. It remains to be shown whether models that include local
cylinder wall thickness variations can lead to improved correlation between predicted

and measured buckling values.

. Transverse shear deformations may be an important consideration with the short wave-

length responses observed in the prebuckling boundary layer region. This effect should

be investigated.

. The postbuckling interlaminar shear failure mode should be investigated numerically as

new versions of the STAGS postprocessing program become available.

As the next step toward the understanding of composite structures, such as an aircraft
fuselage or a launch vehicle, it is recommended to study the important loading condi-
tion of combined bending and internal pressure. The present analytical tools and exper-

imental apparatus are ideally suited for such an investigation.

. A further extension of the present work would be to investigate the bending responses

of cylinders with other layups and geometries. Also, cylinders with stiffeners, cutouts,

and impact damage could be investigated.
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Appendix A: Comments on Donnell Shell Theory

There have been a number of comparisons between various geometrically linear shell
theories in the literature for a wide range of geometries of isotropic cylinders (see for
example [Al] and [A2]). The theories by Donnell {A3], Sanders [A4], and Fliigge [ A5] are
widely used and represent increasing levels of sophistication. Fliigge’s theory is generally
considered to be the most accurate. In the comparisons, it is concluded for isotropic shells
that nearly all theories give essentially the same results for axisymmetric loadings, while
some discrepancies may occur between Donnell theory and higher-order theories for edge
loadings which contain one to four circumferential harmonics, such as in the case of pure
bending. However, for the case of a single circumferential harmonic, bending gradients in
the circumferential direction are generally mild so that the response is adequately
described by membrane terms. Also, agreement between the various shell theories tends to
improve with increasing ‘thinness’, or large R/H values, of the shell wall. Similar shell
theory comparisons have yet to be made with composite cylinders. No comments are made
in the above mentioned references with regard to the influence of the L/R ratio for cylin-
ders with harmonic edge loading.

Reference [A6] compares the buckling loads for orthotropic cylinders subjected to axial
compression in consideration of the geometrically nonlinear Donnell and Sanders ™ kine-
matics. It concludes that correlation between both theories depends primarily on cylinder
the L/R ratio and fiber orientation. Generally, Donnell theory overestimates the buckling

loads compared to Sanders, but is good agreement for ‘short’ cylinders.

Reference [A7] compares bending buckling moments and compression buckling loads

using geometrically linear Donnell and Love kinematics for the case of composite cylin-

* Rotations about the normal are neglecied in [A6], so that the resulting Kinematics are the nonlinear
equivalent of the Love kinematics described in [A7].
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ders. It is shown for axial compression buckling that correlation between the two theories
depends primarily on the L/R ratio. The effect of L/R tends to diminish with increasing
R/H. These observations support those made in [A6]. For bending buckling, it is found
that both the Donnell and Love buckling equations give practically identical results for a
wide range of R/H and L/R.

Overall, it is felt that the range of geometries investigated in this study fall in the ‘short’
and ‘thin’ category. It has yet to be shown that practical differences exist between Donnell
and Fliigge predictions for the prebuckling responses of either isotropic or composite cyl-

inders.
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Appendix B: Constitutive Relations

The geometry of a laminate is defined in Fig. B-1. Each ply of the laminate is assumed to
be subjected to plane stress so that the stresses in the 4’th ply of the laminate can be

described by Hooke’s law as

(k) (k)

L P
O, 01 Q12 Oy & &
_l= = = P

Og = 1012 O O o~ & - (B.1)
To Q16 Q26 Ces yxe—-/:e

The superscript ‘P’ in Eq. (B.1) refers to an initial pre-strain that may be present in the
laminate before mechanical loading takes place. The O ;j's are the transformed reduced ply
stiffnesses of the ’th ply [B1, p. 51]. The initial pre-strained state may be due to a variety
of conditions such as initial geometric imperfections, thermal effects, mechanical preload-

ing, etc.

X H
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(a) Ply Orientation (b) Laminate Geometry

Fig. B-1 Laminate Geometry
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Integrating the inplane stresses in Eq. (B.1) with respect to the thickness coordinate, z,

leads to the standard definitions of the force and moment resultants

+1/2

k
(Mo No Ny} = | 10,057,0}"dz
-1/
+{1/2 P (B2)
(M, Mg, M4} =J’ {c, 01,4} " 2az.
-H/2

The resultants are illustrated in Fig. B-2. Carrying out the integration in the above equation

results in the classical laminate constitutive relation

o P
(N - 1 & Nx
NX Al A A By By Byg £® Ng
)
® A An Ay By By Byl | ,
) Nye - Are Aze Ace Bre B2o Bes| | Txo L) Ny y (B.3)
M, By By By Dy Dy Dygl | Ky m? ’
Mg By Byy Byg D1y Doy Dol | xg v
B,.B, B, D, D, D 6
(M) P16 B26 Po6 “16 Y26 Les| (2 | ,
LMxe
where A.., B..,and D, (i, j = 1, 2, and 6) are the elements of the laminate extensional,
ij* 2ij ij

coupling, and bending stiffness matrices, respectively, and the quantities denoted by the
superscript ‘P’ are the pre-straining force and moment resultants. The elements of the stiff-

ness matrices are computed from the relations
n
ply
— (k)
Ay= 2 Qi (7= 7y
k=1

oy
1 =) 2 2

B‘.j:iZQU (25— 2¢_)) (B.4)
k=1

ply
] =) 3 3
D= 3 ZQU (zy =z 1)-
k=1

Specializing Eq. (B.3) to the case of balanced and symmetric laminates, such as the lami-
nates to be considered in this investigation, results in the simplifications A, = A,, = 0
and B;; = 0. Eq. (B.3) decouples due to this simplification and the resultants become
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P
Ny ApA, 0] & Ny
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0 0 0 A Yoo Nfe
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For the case of pre-straining due to geometric imperfections, thermal effects, or mechani-
cal preloading, the pre-straining force and moment resultants in Eq. (B.5) are defined as

Mol Tay A, 0] € N;
Ny = 1A;pAy 0[] & t+4 N
Nyo | L0 0 Ag A Ny
(B.6)
M D, Dy Dyg K, M,
Mg ¢ =Dy Dy Dyg Rg ¢+ Mg
M, D16 Dog Deg K. M:e

The overbar in Eq. (B.6) indicates known functions representing the pre-straining and the
superscript ‘T’ indicates known thermal force and moment resultants. The thermal result-
ants are defined in [B1, pp. 196-197]. The pre-straining terms are discussed in the follow-

ing for the case of initial geometric imperfections.

(a) Force Resuliants (b) Moment Resultants
Fig. B-2 Force and Moment Resultants
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Initial Geometric Imperfections

Geometric shape imperfections can significantly influence the cylinder responses and are
therefore considered in the present analysis. It is assumed that the geometric imperfection

is in the form of an initial radial displacement imperfection that can be represented by the

series
7 (x, 8) Kmax N
w X, kTx .
o= 2 z [co:g—L— (A coslO+ B, sinl9)
k=01=0 (B.7)

+ sin/%E (Crcos10 + Dyysinlf) }

where the axial half-wave number of the imperfection is given by the integer & and cir-
cumferential full-wave number is given by the integer /. The quantity &, is the maxi-
mum number of axial imperfection terms to be studied. The range of { is limited by the
number of harmonic terms included in the prebuckling analysis, N. The A, B, C;, and

D, are Fourier coefficients.

The associated pre-loading midsurface strain and curvature terms are obtained by substi-
tuting the assumed form of the radial imperfection, Eq. (B.7), into the strain-displacement

equations. Keeping only the first order imperfection quantities results in the expressions

92—
éxo =0 ‘_co:_a W(x,e)
x ox?
o Ww(x,0) _o asz}(x, 9)
Ee = R KQ = —._.—-————R2862 (B8)
L o %W (x,8)
Yo =0 R R P

The pre-straining force and moment resultants are computed from Egs. (B.6) and (B.8).
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Appendix C: Derivation of Governing Equations

Two-Dimensional Partial Differential Equations

The equilibrium equations can be reduced to a set of eight coupled first-order partial dif-
ferential equations for the practical case of laminates with balanced symmetric stacking
sequences. This form is achieved by eliminating the variables N, Mgy, and M o from the
equations by writing these in terms of the eight primary response variables. The collection

of these eight response variables is denoted as Y (x, 6) .

Some useful simplifications are made when substituting the expressions

ou® N _+N
8°=———+—]—(Bo )2= x x__lZeo
x ox 2T A A, 9
11 11 (C 1)
° _BB;’ _Mx+Mf D12K0 DléKO
* 7 o9x Dy D, ¢ Dy *®

obtained from the definitions of N, and M _, into the definitions of Ng, Mg, and M 4. This
substitution results in the following expressions for the variables to be eliminated

A A
12 * o 12,.P P
Ng=—N_+A g, +| 12N _ N
0 A]] X (] {All x 9}

D D
12 ¥ 0 *
MG:ZTI—IM"+D‘K9 + D,k +{D_12M”_Mi (C.2)
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1
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The eight first-order governing equations are derived assuming that all terms in Eq. (C.2)

can be described in terms of the eight response variables. The steps involved in obtaining

each of the eight governing equations are:

1.

o]

ou
The first equation is obtained by solving directly for 55 from the first of equations Eq.
(C.1), and substituting in the definition of € . .
v
The second equation is obtained similarly by solving for o in the definition of N 4,

substituting for 7:9 .

. The third equation is the definition of B .
. The fourth equation is directly obtained from the definition of K , substituting for Kg

(e]
and Klg -

. The fifth equation is obtained directly from the first equilibrium equation,

ON_/dx = —0N 4/ R0.

The sixth equation is obtained from the second equilibrium equation,
ON o/0x = —0Ny/R08, along with first of equations Eq. (C.2) and the definition of
[+
E, .
6

. The seventh equation is obtained from the third equilibrium equation along with the

first and second of equations Eq. (C.2).

. The final equation is derived from the definition of O, along with the third of equations

Eqg. (C.2).

One-Dimensional Ordinary Differential Equations

The derivation of the one-dimensional equations is considerably involved due to the

complexity of the two-dimensional partial differential equations derived above and would

have been extremely difficult without the aid of a symbolic manipulator. The derivation of

the first-order partial differential equations and the generation of the equations involves

the following general steps for the analyses with N =3 and N = 5:

1.

Substitution of solution form, T (x, 0), into the two-dimensional partial differential
equations, carrying out the expansion of nonlinear terms.

Trigonometric simplification of nonlinear terms. This process involved expanding
products of trigonometric terms and lead to higher-order harmonics that must be
neglected in the analysis (see section “Truncation of Higher-Order Terms” below).
Equate leading coefficients of trigonometric terms on each side of the equation of

expanded equations.
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4. Separate each expanded equation into 2N + 1 equations, where each equation corre-

sponds to the leading coefficients of the elements of the vector ¥ (0).

The FORTRAN statements for all of the resulting 8 x (2N + 1) one-dimensional equa-
tions were generated directly by the symbolic manipulator.

Truncation of Higher-Order Terms

The expansion of nonlinear terms, such as the term (Bz )2, involves products of trigo-
nometric terms. Consider a typical nonlinear term such as sin®N@. This term may be sim-
plified to the quantity 1/2 — 1/2 cos2N8 using trigonometric identities. It is observed from
this trigonometric simplification that the higher-order harmonic 2N appears. In general,
raising trigonometric terms to a power ‘r’ results in harmonics of the order r - N. Terms
involving harmonics greater than order N must be neglected in the analysis in order to
have an equal number of equations and unknowns. This is justified since the coefficients of
higher-order harmonics are negligibly small until the vicinity of the collapse rotation is
reached, after which a large number of harmonics is most likely required.
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Appendix D: Specimen Fabrication and Preparation

Six 12-inch-diameter test specimens were made from Hercules AS4/3502 graphite-
epoxy unidirectional prepreg tape. Special tabs were made from fiberglass cloth tape and
attached to the specimens in a secondary layup process. A typical test specimen is shown
in Fig. D-1. The steps involved in fabricating and preparing the specimens for testing are
described in the following.

D.1 Graphite-Epoxy Cylinder Fabrication

Mandrel Preparation

A 48-in.-long, 12-in.-diameter aluminum mandre] was designed and constructed specifi-
cally for the fabrication of the bending test specimens. Before fabrication could take place,
it was necessary to prepare the mandrel. The mandrel was cleaned with solvent to remove
all resin deposits from any previous cylinder curing cycle. Next, the mandrel was sprayed
with Frekote 33 release agent and left standing for one hour. This step was then repeated
for a second time before proceeding with the tape layup process, which is described next.

Tape Layup

The prepreg material was cut into suitably sized segments before starting the layup pro-
cedure. Each ply was formed by joining a number of 12-inch-wide prepreg tape strips
side-by-side with tape. The joined strips were placed at the desired ply orientation and cut
to form one large rectangular-shaped ply, measuring approximately 38 inches in width and
48 inches in length. This method of constructing the desired ply orientations is illustrated
in Fig. D-2 (a) through (c). Under certain circumstances, it is possible to form a seam due
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to gaps or overlaps in the adjacent prepreg strips. The gaps and overlaps formed either
axial, circumferential, or helical seams, depending on the ply orientation.

Each ply was wrapped around the mandrel with the aid of a belt winder. The beltwinder
is a device consisting of a motor driven canvas belt and a number of rollers that support the
belt and the mandrel, as illustrated in Fig. D-3. Each ply was slowly fed onto the mandrel
via the canvas belt as shown in the figure. An axial seam was introduced in each ply in the
form of an overlap of up to approximately 1/8 inch as a result of this wrapping technique.
Seams of adjacent plies were staggered to minimize the effects of any local stiffness dis-

continuities that may have occurred.

Fig. D-1 Typical Test Specimen
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Fig. D-3 Tape Layup Procedure

The mandrel was taken off of the beltwinder and placed on to a holding fixture in prepa-
ration for the curing process. Two-in.-wide strips of TX 1040 tefion release cloth and

Mochberg bleeder paper were cut to length, allowing for a two inch overhang on each end
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of the cylinder. The release cloth strips were attached to the cylinder using teflon tape,
overlapping the adjacent strip by approximately one inch. The bleeder paper was attached
in a similar fashion. GS-43 sealant was then applied to the ends of the mandrel to form an
air-tight seal with the vacuum bag. The vacuum hoses were then connected to vacuum
ports on the mandrel once the mandrel was placed into the autoclave. The cylinder was
then cured at the manufacturer’s recommended temperature and pressure cycles while
drawing a vacuum. Once curing was complete, the completed cylinder was removed from

the mandrel.

Nondestructive Evaluation

Each cylinder was visually inspected after the fabrication process was completed. Ply
seams and surface wrinkles were evident in some of the cylinders after the curing cycle
was completed. The surface wrinkles were attributed to the wrinkles in the canvas belt of
the beltwinder. Axial, helical, and circumferential ply seam orientations, introduced by the
manufacturing process described in the preceding, were clearly visible in some specimens.
Fig. D-4 illustrates a specimen where all three seam orientations are visible.

Next, each cylinder was inspected ultrasonically to check for the presence of internal
voids, porosity, delaminations, and other anomalies. An automated C-scan procedure,
shown schematically in Fig. D-5, was used to accomplish this task. The cylinder to be
inspected was placed on a turntable in a water-filled C-scan tank. The ultrasonic scans
were conducted such that the inner and outer probes indexed axially (vertically in the fig-
ure) after each 360° revolution of the turntable. Due to the length of the cylinders, two

scans were required.

Both the visual inspection and the C-scan of cylinder CYL-3 indicated the presence of a
1.5 inch by 2.5 inch internal defect. The defect turned out to be a piece of backing tape left
over from the cylinder layup procedure. This manufacturing defect lead to the fabrication
of only one L/R =2 bending test specimen instead of two.

D.2 Fiberglass Tabbing Procedure

The test specimens were cut to length on the aluminum mandre] using a diamond tipped
cutting wheel before laying-up the fiberglass tabs on the cylinder ends. The tabs were
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Fig. D-4 Axial, Helical, and Circumferential Ply Seams

stepped in thickness, as shown in Fig. D-6, for the purpose of introducing the bending
loads into the specimen. The following materials were required for laying up the tabs:

+ 1 in. masking tape » 1in. paint brush

* 2 in. masking tape « 3in. squeegee

« 1 in. teflon tape + Bondo™

« 1 in.-wide by 0.013 in.-thick fiber- * G.L.R. 125 resin
glass cloth tape + G.L.H. 226 hardener

« 3 in.-wide by 0.013 in.-thick fiber-
glass cloth tape

« 12 in.-diameter split aluminum disk
(internal)

« Kraft paper « 12 in.-diameter split aluminum ring

+ Polyethylene sheet (external)
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Fig. D-§ C-Scan Setup

Preparation of Cylinder Ends

To achieve a good bond between the fiberglass tabs and the graphite-epoxy cylinder, it
was necessary to prepare the internal and external surfaces of the cylinder’s ends. Approx-
imately four inches of each end of the cylinder was wiped off with a paper wiper moist-
ened with M.E.K. The inside and outside mid section of each cylinder was then masked off
with brown paper and masking tape leaving 2.75 inches exposed at each end. The exposed
end sections were then sandblasted using 120 grit aluminum oxide at 40 pst. The ends
were again wiped with M.E.K. Next, the ends were re-masked using 1 in. teflon tape adja-
cent to sandblasted regions. Two in. masking tape was placed over teflon tape with a 5/8
inch overlap.

A split external aluminum ring and split internal disk were coated with release agent.
The internal disk was fitted into the cylinder 2.75 in. from the end and tacked into place
with a fillet of Bondo™. A plywood disk was fitted into the opposite end of cylinder for
support and to maintain circular shape. The outer split ring was then attached to the cylin-
der in a similar fashion. Twelve pieces of (.013 in.-thick and 40 in.-long segments were
cut from a roll of 3 in.-wide fiberglass cloth tape along with six pieces of 0.013 in.-thick
and 40 in.-long segments from a roll of 1 in.-wide fiberglass cloth tape for the inside tab
layup of one end of the cylinder. A 480 in. length of the 3 in. tape and a 240 in. length of
the 1 in. tape were cut for use for the outside tab layup.
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' B > 8-ply graphite-epoxy
I | cylinder wall

— —— fiberglass-epoxy tabs

Fig. D-6 Detail View of Fiberglass Tab

Tabbing

The inside 2.75 in. length of one end of the cylinder was coated with G.L.R. 125 resin
and G.L.H. 226 hardener. A length of 3 in. cloth tape was spread out on a plastic sheet and
saturated with the resin/hardener mixture. The tape was then rolled up in preparation for
laying up the inner tab. The saturated 3 in. cloth tape was then carefully unrolled around
the inside cylinder wall as shown in Fig. D-7 (a), making sure that it was butted up against
the inner aluminum disk. Care was taken to work out any air bubbles. This procedure was
repeated for the remaining eleven strips of 3 in. fiberglass cloth. The outside cloth tape was
prepared and applied up in a similar fashion, working with approximately 3 foot-lengths at
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a time. Again, care was taken to ensure that the tape was butted up against the outer alumi-
num split ring evenly and that the air bubbles were worked out. The strips of 1 in.-wide
tape were saturated with the resin/hardener mixture and applied 2 in. from inside disk.
This was repeated until all 1 in.-wide cloth strips were applied. The entire setup, shown in
Fig. D-7 (b), was left standing overnight to cure at room temperature. The external split
ring and internal split disk were then removed and set up for tabbing the opposite end of
the cylinder. This entire procedure was then repeated for other end of cylinder. Both ends

of each cylinder were ground flat and parallel as a final step.

D.3 Specimen Potting

Potting Procedure

Each end of the test specimen was potted in the annular space between an inner and an
outer aluminum loading ring using a low-temperature melting point alloy. Both Beimont
alloy 2505 and Cerrobend® alloy were used as a potting compound, depending on the
availability at the time of potting. There was no preference for either alloy since the mate-
rial specifications were identical. The melting point of these alloys is 158 °F.

The inner and outer loading rings were bolted concentrically to a flat aluminum plate
with a central access hole in preparation for the potting process. The test specimen was
then centered in the annular region between the rings and held in place using four radial set
screws. This assembly was placed on top of a hot plate and uniformly heated to a tempera-
ture of approximately 175 °F. The alloy was heated to 200-220 °F in a vacuum oven and
carefully poured into the inner and outer annular regions between the rings and the cylin-
der wall. Both the inner and outer annular region were slightly over-filled. The set screws
were backed out after the alloy started to solidify and the entire assembly was allowed to
cool at room temperature. A potted end is shown during the cooling phase in the photo of
Fig. D-8. This procedure was repeated for the opposite end, makin g sure that the bolt holes
on all of the loading rings were aligned properly.

Radial Deformations due to Potting Procedure

Small radial deformations of the cylinder ends were observed after potting some of the
specimens. This effect was attributed to the thermal contraction of the aluminum loading
rings that occurred during the cool-down phase of the potting procedure. In an effort to

157



Appendix D

(a) Layup of
fiberglass tab

(b) Completed
fiberglass tab

Fig. D-7 Fabrication of Fiberglass Tabs
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Fig. D-8 Potted Specimen End

quantify the effect of the thermal deformations, up to four diameter measurements were
made at each end of some specimens before the potting procedure and again after the pot-
ting procedure was completed. The diameters were measured 1/8 inch from the surface of
the low-temperature melting point alloy at specified 8-locations. The measurement results
are given in terms of the change in radius, wp, and are summarized in Table D-1. The
value of wy, was computed from the relation w, = (d, - d) /2, where d; is the initial
cylinder diameter and df is the final diameter. This radial deformation is depicted in Fig. 2-
3 (©).

Table D-1 indicates that both radial pinching and expansion can occur as a result of the
potting process. The most severe pinching was observed to occur in specimen CYL-2 as
~0.0085 in., or 23% of the wall thickness. The most severe expansion was observed to
occur in specimen CYL-1B as +0.0045 in., or 12% of the wall thickness. The quasi-isotro-
pic [+45/0/90]g specimens and the axially stiff [+45/0,]g specimen tended to exhibit the
greatest amount of pinching. The hoop-stiff [¥45/90;]g specimens, in contrast, tended to
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exhibit only a slight radial expansion (approximately +0.0015 in. or 4% of the wall thick-

ness).
Table D-1 Measured Radial End-Deformations
0-location ul e T
L | CYL-1A | CYL-1B | CYL-2 | CYL-3A | CYL-4A | CYL-4B
0° - 180° g +0.002 | -0.005 | +0.002 | +0.001
525 | | +00018 | | +0.002 | +0.0015
90° - 270" . -0.0015 | +0.0015 | +0.001 | +0.001
135°-315°) | . +0.0025 | | 40002 | +0.001
0" 180° T 0006 | 0001 | -0.001 | +0.001 | +0.0015
45° - 225° 049 -0.0085 | 1 40001 | +0.002
90° - 270° | 400045 | -0.006 | 0.000 | +0.002 | +0.001
135° - 315° | ' | 400005 | | +0.002 | +0.001

a. No measurement availablc
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Appendix E: Properties

Pertinent information regarding the cylinder wall thickness measurement data, mechani-

cal properties, and stiffness properties is presented here for each test specimen.

Wall Thickness Measurement

The average wall thickness of each cylinder was computed from measurements at 48
selected locations using a 6-in.-deep micrometer. The measurement locations are shown in
Fig. E-1 and the data are summarized in Table E-1. The wall thickness was found to be
greater in the vicinity of visible ply seam overlaps than in the regions away from the
seams. The thickness measurements in Table E-1 represent the average cylinder wall
thickness, #, the average ply thickness, &, the minimum and maximum wall thicknesses,
H ., and H__ . respectively, and the standard deviation of the measurement data. The

data do not include the visible ply seams.

Table E-1 Specimen Wall Thickness Measurements

Specimen Wall _ . Standard
1.D. C . H,in. h, in. H_ ...in. | H_ .. in. | Deviation,
Code onstruction in.

CYL-1A 0.0374 0.0047 0.0350 0.0390 0.0007

CYL-1B [+45/0/90]g | 0.0375 0.0047 0.0360 0.0390 0.0007

CYL-2 0.0368 0.0046 0.0355 0.0400 0.0009

CYL-3A [+45/0,]g 0.0381 0.0048 0.0355 0.0400 0.0010

CYL-4A 0.0369 0.0046 0.0350 0.0390 0.0009

[+45/90,15
CYL-4B 0.0358 0.0045 0.0330 0.0385 0.0012
Average values 0.0371 0.0046 L L
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Fig. E-1 Thickness Measurement Locations

Mechanical Properties

The nominal mechanical properties for AS4/3502 graphite-epoxy were obtained from
reference [E1, p. 116] and are summarized in Table E-2. The nominal ply thickness in [E1]
was assumed to be 0.0055 inches. Comparing the average measured value of £ = 0.0046
inches (see Table E-1) to the nominal ply thickness of 0.0055 inches indicates that the

measured ply thicknesses were approximately 16% thinner than the nominal ply thickness.

Table E-2 Nominal Mechanical Properties for AS4/3502 Graphite-Epoxy

E,, Msi E,, Msi Gy, Msi Vi,

19.6252 1.4552 0.82 0.2952

a. Value represents average of tension and compression modu-
lus.

The measured ply thicknesses suggest that the actual fiber volume fractions, Vf, were
greater than assumed value of 0.62 [E2]. It was concluded that the assumed nominal mate-
rial properties were affected by the increased fiber volume fraction to some extent. The

source of the reduced thicknesses was attributed to excessive resin flow during the curing
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of the cylinders. The effect of the reduced ply thickness is depicted schematically in Fig.
E-2. In this figure, the initial ply thickness is t;,y = 1;+1,, where 1, is the net thickness of
the fibers and t:’n is the initial net thickness of the matrix. After curing, it is assumed that

(4] 0
! =I.+1 _ _ o

i - = -
ply T im Liy =ttt = 1+ (1, —Ar)

(0]
[”l
e

S A

(a) Assumed Nominal Ply Thickness (b) Actual Ply Thickness

Fig. E-2 Effect of Reduced Ply Thickness on Fiber Volume Fraction

the final ply thickness is given by Loty

thickness. The new matrix volume fraction, V,,, 1s computed as

=1+ (t;; — Ar), where At is the net reduction in

14
v =7 (E.1)
{

" by
The corresponding adjusted fiber volume fraction, V,, is larger than the assumed fiber vol-
ume fraction and is given by

vf=1—vm=1—!-ﬁ. (E.2)
ply
Adjusted mechanical properties were computed for each specimen based on the com-
puted laminate volume fractions, Egs. (E.1) and (E.2), the nominal mechanical properties
given in Table E-2, and the rule of mixtures procedures described in reference [E3]". The
resulting thickness-adjusted mechanical properties and average values are summarized in
Table E-3.

* The matrix Poisson’s ratio was assumed o be (0.35.
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The relative change in the nominal mechanical properties due to the thickness-adjusted
value of v, is reported in Table E-4. The values in this table are given as the percent
change relative to the nominal properties. For an average ply thickness reduction of
approximately 16%, the average increase in Vf, E,, and E, is approximately 19%. The
shear modulus, G,, increases by approximately 26% and Poisson’s ratio, v, ,, decreases

by approximately 3%.

Table E-3 Thickness Adjusted Mechanical Properties

Specimen
1D, E, Msi | EpMsi | GipMsi | vy,
Code
CYL-IA | 23.4 174 1.02 0.285
CYL-1B 2318 173 1.02 0.285
CYL-2 2324 174 1.02 0.285
CYL3A | 2283 1.70 0.99 0.286
CYL-4A | 23.55 1.77 1.04 0.284
CYL-4B 24.26 1.84 1.09 0.282
Averaged | 23.38 175 1.03 0.285

a. average ply thickness is 0.0046 in.

Table E-4 Change in Mechanical Properties Due to Adjusted Volume Fraction

Spicli)men Ply v E E G v
Code | Thickness ! ! 2 12 12
CYL-1A -15.0 +17.6 +18.4 +19.5 +24.7 -3.3
CYL-1B -14.8 +17.3 +18.1 +19.1 +24.2 -3.2
CYL-2 -15.0 +17.6 +18.4 +19.5 +24.7 -3.3
CYL-3A -13.4 +15.5 +16.3 +16.9 +21.3 2.9
CYL-4A -16.1 +19.3 +20.0 +21.5 +27.2 -3.6
CYL-4B -18.6 +22.9 +23.6 +26.3 +33.3 -4.3
Average -15.5 +18.4 +19.1 +20.5 +259 -3.4
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The laminate extensional and bending stiffness properties are summarized in Tables E-5

and E-6, respectively. The stiffness properties were computed from the data given in

Tables E-1 and E-3. The effective inplane laminate properties are summarized in Table E-

7.
Table E-5 Laminate Extensional Stiffnesses
peamen | wan | Ay | Ap | oAp | A
Codé Construction |  |bg/in. Ibs/in 1bs/in. lbs/in.
CYL-1A 376,227 112,417 | 376,227 131,905
CYL-1B [+45/0/90]g | 376,169 112,292 | 376,169 131,938
CYL-2 376,227 112,417 | 376,227 131,905
CYL-3A [+45/0,]g 578,575 112,647 173,624 131,726
CYL-4A 180,217 115,466 | 596,421 136,426
[¥45/90,]5
CYL-4B 174,825 112,012 | 578,579 132,345
Table E-6 Laminate Bending Stiffnesses
Spei_cll)[_mn Wall Dy, Dy, Dy, D, Dy, D
Code Construction in.-1bs in.-l1bs in.-1bs in.-1bs in.-l1bs in.-1bs
CYL-1A 40.1 21.3 312 -6.6 -6.6 23.6
CYL-1B [+45/0/90] 40.3 21.4 314 -6.7 -6.7 23.7
CYL-2 40.1 213 31.2 -6.6 -6.6 23.6
CYL-3A [+45/0,]g 43.1 22.2 30.8 -6.9 -6.9 24.5
CYL-4A 30.0 21.3 41.8 -6.6 -6.6 237
[¥45/90,]¢
CYL-4B 27.4 19.4 38.1 -6.1 -6.1 21.6
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Table E-7 Effective Inplane Laminate Properties

Specimen ’
LD. Wall | p ve | Eg MsiP | Gogu Msi® | v "
Construction x x x
Code
CYL-1A 9.164 9.164 3.528 0.299
CYL-1B [¥45/0/90]5 9.139 9.139 3.518 0.299
CYL-2 9.164 9.164 3.528 0.299
CYL-3A [¥45/0,7]g 13.274 3.985 3.460 0.648
CYL-4A 4.132 13.720 3.579 0.194
[¥45/90,]5
CYL-4B 4278 14.158 3.697 0.193

2 \
a. E = (ALAy—Al)/ (HAy)

2
b. Eg = (A Ay — A/ HAy)

c. G g = Ag/H

d. Vi = A/ Ay
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Appendix F: Surface Shape Measurement

The external surface of each specimen was accurately measured using a Brown &
Sharpe validator coordinate measurement system, resulting in a three-dimensional surface
representation of each cylinder. Surface coordinates were measured every 1/8 inch axially
and every 2° circumferentially, yielding approximately 17,000 measurement points for the
L/R =2 specimens and over 43,000 measurement points for the L/R = 5 specimen. These
data were then reduced to compute a Fourier series representation of the surface shape and
an average midsurface radius for each specimen. The Fourier analysis software used for
these calculations, Tudshell, is described in reference [F1]. The measured shape imperfec-

tions were best described by a half-wave cosine representation of the form

max max

0
w(x ) Z Zcm lAklcmlG+Bklsm16] (F.1)
k=00=0

where A, and B, are the Fourier coefficients and X is aligned with the cylinder x-axis but
is measured relative to the end of the cylinder. The number of half-waves in the axial
direction is £ and the number of full waves in the circumferential direction is /. The range
of & was limited to 0 <k < 18 for the L/R = 2 specimens and 0 < k < 39 for the L/R =5
specimen. The range of / was limited to 0 < /< 50 for all specimens. The radial shape
imperfection was modeled as an initial strain imperfection. An external user-written sub-
routine was used to compute the radial shape imperfection for each specimen in the
STAGS finite element analysis. Details of the implementation of the geometric imperfec-

tions can be found in [F2].

A schematic of the measurement setup is shown in Fig. F-1. The contact probe scans the
specimen surface in three-dimensional cartesian space by indexing in the circumferential
direction and performing scans along the axial direction. All measurements were referred
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to a fixed point on the potted specimen which was positioned on the measurement table.
The results of the surface measurements are shown graphically in the form of three-dimen-

sional surface plots in Figs. F-2 thru F-7.

instrumentation bridge

contact probe moves in
3-D cartesian space

cylinder —\i

X

50
-

I axial scans

L
2
v

loading
]‘/_ rings

(measurement table)

Fig. F-1 Surface Shape Measurement Setup

The surface plots show that the imperfection shapes are characterized by low frequency
oscillations in the circumferential direction and comparatively little variation in the axial
direction. The peak imperfection amplitudes for each specimen, w,, and w, .., are sum-
marized in Table F-1.

Table F-1 Peak Imperfection Amplitudes

Specimen Wall _ W
Identification | Construction Wmin Ymax M
Code H H H
CYL-1A -0.239 0.346 0.585
CYL-1B [¥45/0/90]s -().432 0.565 0.997
CYL-2 -().541 0.866 1.407
CYL-3A [%45/0715 -0.203 0.333 0.536
CYL-4A -0.325 0.398 0.723
[+45/90,]5
CYL-4B -0.382 0.354 0.736
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Fig. F-6 Measured Surface Sha pe, CYL-4A, (+45/90,]g, L/'R
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Fig. F-7 Measured Surface Shape, CYL-4B, [745/90,]g, L/R
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